
Example Overflow: Using Social Media for Code Recommendation

Alexey Zagalsky

Blavatnik School of Computer

Science

Tel-Aviv University

Tel-Aviv, Israel

alexeyza@tau.ac.il

Ohad Barzilay

Blavatnik School of Computer

Science

Tel-Aviv University

Tel-Aviv, Israel

ohadbr@tau.ac.il

Amiram Yehudai

Blavatnik School of Computer

Science

Tel-Aviv University

Tel-Aviv, Israel

amiramy@tau.ac.il

Abstract—Modern Q&A websites, such as Stack Overflow, use

social media to provide concise answers, and offer rich

technical context with quality assessment capabilities.

Although some of the answers may include executable code

snippets, they are entangled in free text and are not easily

extracted. Q&A websites are not designed for such direct code

reuse.

We present Example Overflow, a code search and

recommendation tool which brings together social media and

code recommendation systems. Example Overflow enables

crowd-sourced software development by utilizing both textual

and social information, which accompany source code on the

Web. Its browsing mechanism minimizes the context switch

associated with other code search tools. In this paper we

describe the development of the tool, provide preliminary

evaluation, and discuss its contribution to an example centric

programming paradigm.

Keywords-code search; example overflow; stack overflow;

code repository; example embedding; example centric

programming; crowd-sourced software development; social

recommendations;

I. INTRODUCTION

Social media provides useful recommendations for many
areas of our lives. For example, when considering what
movies to watch, one may use recommendations from his or
her immediate social cycle (e.g. Facebook friends), or use the
wisdom of the crowd [20], using, for instance, the ratings on
imdb.com. This is part of a more general trend in which
social recommendations (e.g. Facebook) have begun to
replace search (e.g. Google Search).

The Software Engineering (SE) domain is no different;
social media has been shown to be beneficial in many areas
of SE including feature prioritization [1], risk analysis [19],
collaborative filtering [7], knowledge management [9], and
documentation [4] [22].

In this paper we introduce a new application for social
recommendations. We present Example Overflow - a code
search and recommendation tool - which leverages the body
of knowledge created by the socio-professional media, to
recommend high quality, embeddable code. Our tool uses
built-in social mechanisms of the popular Q&A website,
Stack Overflow

1
. To the best of our knowledge, at present,

1 http://www.youtube.com/watch?v=NWHfY lvKIQ

there is no general-purpose software development crowd-
sourcing platform [24].

Example Overflow is a live system, and is currently
deployed as a public and free website

2
. Our initial

implementation contains all code snippets that appear in
accepted jQuery related answers (more than 33,000 code
snippets). jQuery

3
 is a popular JavaScript library, initially

released in 2006 and is ranked fifth in its popularity on Stack
Overflow (with over 150,000 related questions). We chose it
as our case study since we assume that Web developers
would find it easier to adopt an example centric
programming approach. Our decision is also supported by
the following: (1) Parnin and Truede [17] found that Stack
Overflow covers 84.4% of the jQuery API, and (2) Our study
shows that 20% of the jQuery related questions have a code
snippet embedded in their accepted answer.

Example Overflow is developed as part of a
comprehensive effort to create an Example Embedding
Ecosystem [2] – an example centric development method in
which example related concerns are weaved in the
development process, software tools, practices, training,
organization culture and more.

Software development crowd sourcing, as manifested by
our approach, is challenging the division of labor between
the human and the machine [23]. In many existing code
search tools, such as Krugle

4
 and Koders

5
, the machine is in

charge of evaluating the quality and relevance of the code
found. In Example Overflow, on the other hand, humans, i.e.
the socio-professional community, are assessing the code,
and the machine only facilitates the process of example
embedding.

The remainder of this paper is structured as follows. In
section II we review related work by considering the
alternatives offered by other code search tools. In Section III
we describe Stack Overflow on which we base our tool, and
in Section IV we briefly elaborate on our design decisions. In
Sections V, VI and VII we examine some of the aspects
involved in the development of Example Overflow, provide
preliminary evaluation, and discuss its advantages with
respect to Stack Overflow. In section VIII, we elaborate on
the limitations of example centric programming in general

2 http://www.exampleoverflow.net/
3 http://jquery.com/
4
 http://www.krugle.com/

5 http://www.koders.com/

978-1-4673-1759-7/12/$31.00 c© 2012 IEEE RSSE 2012, Zurich, Switzerland38

and of crowd sourced software development in particular,
and we discuss threats to validity. Finally, in section IX we
outline our future work.

II. RELATED WORK

Programming by example was found to be intuitive to
many developers, novices and experts alike [13]. Tools such
as Strathcona [11] and PARSEWeb [21] provide developers
with code fragment recommendations, taken from a central
code repository, by generating queries based on code context
and the structural details of the developer's activity. The
quality of the code found by these tools is derived from the
overall quality of the repositories they use.

Code search engines, on the other hand, such as Krugle
6

and Koders
7
, search in a large set of open source repositories,

but do not provide explicit mechanisms to evaluate or
improve the quality of the found snippets. Other tools like
MICA [18], Exemplar [6] or [15] use API calls or API
examples to recommend example code, but they are
restricted to providing a limited set of examples based on the
API only.

Using social media, however, allows Example Overflow
to scale beyond specific code repositories and to leverage
human brainpower [23] to assess the quality of specific code
snippets.

Some tools like [12] use a tool specific query language in
order to improve their search precision. Example Overflow,
however, takes the 'Google Paradigm', allowing natural
language search queries. This approach is also advocated by
[18].

III. STACK OVERFLOW

Stack Overflow
8
 uses social mechanisms to facilitate

knowledge exchange between users and to create an
information archive. In Stack Overflow, a programmer can
ask a question about almost any programming related topic,
and receive a detailed response within 10 minutes median
[14]. Answers on Stack Overflow often become a substitute
for official product documentation, when the official
documentation is sparse or currently non-existent

9
. Truede et

al. [22] found code review to be one of the most effective
usages of Stack Overflow.

The way Stack Overflow is designed allows each
question and answer to be rated. Eventually for each
question, the best answer is chosen to be "the accepted
answer" for that question. In addition, members can edit each
question and each answer to allow the information to
constantly evolve and remain up to date. Finally, Stack
Overflow has an enormous community of members, it is an
already big knowledge base (currently it has over 2.6 million
questions and 1.6 million accepted answers) and it is
constantly growing.

6
 http://www.krugle.com/

7 http://www.koders.com/
8
 www.stackoverflow.com

9
 https://stackoverflow.fogbugz.com/default.asp?W25450

IV. DESIGN DECISIONS

In order to implement a crowd sourced software

recommendation system, one needs to explicitly foresee the

division of labor between the developer and the machine.

The system should facilitate the core practices involved in

Example Embedding namely enable browsing and

comparing multiple code examples and minimizing the

developer's context switch as elaborated below.

A. Comparing Multiple Examples

Experienced developers, with whom we discussed
example centric development, reported browsing multiple
examples, comparing them side by side, and eventually
choosing the examples most suitable for the developer's
needs (sometimes merging multiple examples). This also
conforms to the literature suggesting that it is easy to extract
the repetitive example structure from a specific context, and
to reuse the repetitive part for new tasks [16][10].

Traditional code search tools (e.g. Google Code Search,
Krugle) allow searching for code, where a developer inputs a
query and then he or she is displayed with the search results
consisting of the filename or the first few lines of the source
code. The developer is then forced to click on each result,
open it in a new view, inspect it separately and decide
whether it is the best example to be found. Using these tools,
there is no way for the developer to compare the current code
example with the ones viewed previously or the one to be
inspected next.

When searching in Example Overflow, on the other hand,
the developer is presented with the code of the 5 most
suitable results. Our preliminary evaluation supports this
decision as can be seen in section VI. This allows the
developer to see all the code examples in the same view,
where they are not isolated from each other, compare them
and choose the one that suites him or her best. If none of the
results are suitable, then automatically the next 5 most
suitable code examples are displayed as well. This way the
developer will be presented with the minimum amount of
code examples that are needed to find the most suited one(s).

Figure 1. Example Overflow Web interface.

39

B. Minimal Context Swithcing

We argue that example search is an integral part of
modern software development (Example Embedding
Ecosystem [2]). Therefore we aim to allow the developer to
find example code with minimal context switching as
possible, ideally without leaving the IDE.

To support this, our design has a single search window,
as can be seen in Figure 1. The developer is presented with
the best search results, where each result shows only the
code snippet itself, thus allowing the developer to see all the
code snippets at the same view without opening new views.
If the developer needs more context for the code snippet, all
he or she has to do is hover (without even clicking) over the
example with the mouse, and choose either "Question" or
"Answer" to see that context inside the same view.

V. EXAMPLE OVERFLOW

A. Populating the Repository

We use Stack Overflow's API to request all the questions
relevant to our current domain, jQuery tagged questions,
where we filter out all the questions without an accepted
answer. We follow a conservative approach by choosing
only accepted answers to ensure retrieval of high quality
results. The next step is to check whether each of these
questions has a code snippet inside the accepted answer. If
so, that code snippet is extracted and saved to our database
with all the accompanying information: the question title, the
question body, the answer body, the code snippet itself, the
user rating of the answer from Stack Overflow, the view
count of the question, the tags associated with the question
and other relevant information. If that question is already in
our database we only update the changed information. This
process can be executed as a scheduled task to allow us to
keep the data in sync with the data at Stack Overflow.

B. Searching

Example Overflow uses keyword search based on the
Apache Lucene [8] library, which internally uses the term
frequency-inverse document frequency (tf-idf) weight [25].
In order for Apache Lucene to search, one needs to define
which parameters are to be analyzed and indexed. For
keyword search index we use both the code snippet and the
additional metadata which accompanied the code snippet at
Stack Overflow. This allows a developer to find code
snippets that may not contain the search query keyword, but
the keyword appears in the contextual data and indicates that
it has been used in that context.

Each code example is represented as a document with
several parts: title, tag, answer, question, code, and social
metadata. We use the following formula to calculate the
score of each document representing a code example:

 Sdoc = [WtitleStitle + WtagStag + WanswerSanswer
 + WquestionSquestion + WcodeScode] Smetadata

Where each Spart represents the individual score of the
respective part of the document, and Wpart represents the

weights that may be chosen to tune the tool for the best
results possible. The weights would be computed based on a
set of experiments, but for the initial evaluation presented in
this paper, they were chosen heuristically to give higher
priority to results with matching keywords in the title or tag,
over matches in the other parts, and are Wtitle=4, Wtag=4,
Wanswer=1, Wquestion=1, Wcode=2.

VI. PRELIMINARY EVALUATION

As a preliminary evaluation, we used a jQuery
benchmark to compare the characteristics of Example
Overflow with other existing code recommendation systems,
as elaborated below.

A. Evaluation Setup

We used the code assignments from the book jQuery in
Action [3] to define a benchmark of ten frequent
programming tasks shown in Table I. For each task we have
manually decided on a concise query to be used by a
potential developer in order to find the desired code snippet.
We have used the same query in each of the following tools,
and have examined the first 20 results returned for each
query.

TABLE I. SEARCH QUERIES USED FOR THE EVALUATION

BENCHMARK

Data Point Search Query

Dynamic Dimension "jquery dynamic dimension"

Hover "jquery hover div"

Position "jquery position"

Rounded Corners "jquery rounded corner"

Draggable "jquery draggable"

Droppable "jquery droppable"

Autocomplete "jquery autocomplete from db"

Accordion "jquery accordion"

Date Picker "jquery datepicker"

Image Scale "jquery image scale effect"

We used the following existing tools in the evaluation:

Google Search, Stack Overflow, Krugle, and Koders. We
also used Google Code Search in our preliminary evaluation,
where it had similar results to Krugle, but recently this
service has been shut down by Google.

We have not included Strathcona [11], Blueprint [5] or
PARSEWeb [21] in the evaluation, because they are domain
specific and would not work for the jQuery domain.

B. Evaluation Methodology

For each query and each tool we have received a list of

results. These results were manually examined by one of the

authors (see section VIII). We have used the actual code

from the book jQuery in Action as a point of reference.

40

 We examined the list of results retrieved from each tool,

and determined whether it accomplished the programming

task. If no matching result was found at the top 20 results, it

was marked as "not found" and received a rank of 21 for the

average calculation.

C. Evaluation Results

Table II shows the rank location of suitable example code
in the search results returned from each tool.

TABLE II. SEARCH RESULTS COMPARISON: RANK OF A SUITABLE

EXAMPLE AT THE RETURNED SEARCH RESULTS.

Data Point

Code Repository Tools

Google

Search
Krugle Koders

Stack

Overflow

Example

Overflow

Dynamic

Dimension

4
Not

found

Not

found
1 3

Hover 1 2 1 1 2

Position 3
Not

found

Not

found
4 1

Rounded
Corners

2
Not

found
3 3 1

Draggable 1
Not

found
3 2 1

Dropable 1
Not

found
3 1 2

Autocomplete 1
Not

found

Not

Found
1 1

Accordion 1
Not

found
12 3 1

Date Picker 1
Not

found
3 1 1

Image

Scale
2

Not

found

Not

found

Not

found
3

Avg. Rank 1.7 19.1 9.7778 3.8 1.6

It can be seen that our tool has overall the best results

with an average result rank of 1.6, where Google Search and
Stack Overflow show similar results with 1.7 and 3.8
respectively, but Krugle and Koders have poor results. The
reason for the poor results may be that both of them search
for keywords to match the search query, without taking into
account the context of the found keyword or any additional
metadata. On the other hand our tool gives different weights
to keywords based on their origin (code, title, tag, question,
and answer). With this approach we obtain better results.
Another possible cause for the poor results might be because
both Krugle and Koders are limited to open source projects,
where recent domains such as jQuery are not currently
present. In addition it can be seen that our tool didn't require
loading additional results (by scrolling down) and managed
to show a suitable code example in the top 5 results.

During our evaluation we have also examined the amount
of view/context switches by counting the number of mouse
clicks required by the developer between the search request
and until the developer was able to see the actual suitable
example code.

It can be seen at Table III that our approach has an
average of 0 mouse clicks hence it doesn't require the
developer to switch views or open new views, but instead we

immediately show the developer the actual relevant code
snippets.

During our preliminary evaluation process we noticed
that both Krugle and Koders returned results which linked to
actual project files, without guiding the developer to the
location of the required example code inside the project. This
requires the developer to read that file as a whole, and search
for the possible match for his query, thus forcing the
developer to context switch from his actual task. In addition,
most of their returned search results are only partial and have
context in other files of that project, which requires the
developer to further switch context and start looking at the
other possibly relevant files.

TABLE III. CONTEXT SWITCHING COMPARISON: THE NUMBER OF

MOUSE CLICKS REQUIRED BY THE DEVELOPER TO SEE THE ACTUAL CODE

EXAMPLE.

Data Point

Code Repository Tools

Google

Search
Krugle Koders

Stack

Overflow

Example

Overflow

Dynamic
Dimension

7 - - 1 0

Hover 1 3 1 1 0

Position 5 - - 7 0

Rounded

Corners
3 - 5 5 0

Draggable 1 - 5 3 0

Dropable 1 - 5 2 0

Autocomplete 3 - - 1 0

Accordion 1 - 23 6 0

Date Picker 1 - 5 1 0

Image Scale 3 - - - 0

Avg. Mouse
Clicks

2.6 3 7.3333 3 0

VII. DISCUSSION

Searching for code examples is possible using Stack
Overflow directly. However Example Overflow is better
optimized for this use case, as our preliminary evaluation
suggests. Although our approach uses data taken from Stack
Overflow, we show different results, since we analyze the
data differently and we use our own example-targeted search
formula as shown in (1).

VIII. LIMITATIONS AND THREATS TO VALIDITY

Being part of the Example Embedding Ecosystem is a
double-edged sword, because Example Overflow is not only
enabling the ecosystem, but is also being enabled by it.
Without proper training, the developer would not be able to
critically evaluate the various examples, browse them and
merge them. Without proper practices, systems which are
developed using examples extensively may end up as
Frankenstein code [2], and bugs may find their way in
because the examples used were not properly tested.

41

Moreover, it is still unknown if crowd sourced software
development would be able to scale well, as currently, Stack
Overflow has only relatively small code snippets.

The preliminary evaluation provided above is limited; we
examined only a small subset of programming tasks, with
mostly popular tasks. The queries were phrased by one of the
authors, who also determined the relevance of the results.
Further evaluation is required, both qualitative and
quantitative, involving professional developers.

IX. FUTURE WORK

Example Overflow was designed as a generic system to
support additional domains and with a possibility to support
other social media websites in addition to Stack Overflow.

Our future work will focus on integrating our tool into
the IDE (Similarly to Blueprint [5] and Strathcona [11]) to
further minimize the developer's context switching.
Moreover, this will allow to run the example code in a
sandbox mode before deciding whether it's suitable or not,
and auto embedding the example code into the existing code
(similarly to refactoring). This will also allow to auto suggest
search queries by using the developer's structural context. By
accomplishing these steps, the usage of examples will
become an integral part of the software development cycle.

We plan to conduct a user study in which we observe
professional developers as they are using our tool and learn
how it is actually being used by the community. We hope to
be able to characterize a set of best practices involved with
example centric development. We also plan to data mine the
system logs in order to reveal interesting patterns and fine
tune the scoring formula (1).

ACKNOWLEDGMENT

We would like to thank Mati Shomrat for his valuable
comments and helpful suggestions.

REFERENCES

[1] D. Bajic and K. Lyons. Leveraging social media to gather user
feedback for software development. In Proceedings of the 2nd
International Workshop on Web 2.0 for Software Engineering,
Web2SE ’11, pages 1–6, New York, NY, USA, 2011. ACM.

[2] O. Barzilay. Example embedding. In Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections
on programming and software, ONWARD ’11, pages 137–144, New
York, NY, USA, 2011. ACM.

[3] B. Bibeault and Y. Katz. jQuery in Action. Manning Publications, 2nd
edition, 2010.

[4] G. Bougie, J. Starke, M.-A. Storey, and D. M. German. Towards
understanding twitter use in software engineering: preliminary
findings, ongoing challenges and future questions. In Proceeding of
the 2nd international workshop on Web 2.0 for software engineering,
Web2SE ’11, pages 31–36, New York, NY, USA, 2011. ACM.

[5] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer.
Example-centric programming: integrating web search into the
development environment. In Proceedings of the 28th international
conference on Human factors in computing systems, CHI ’10, pages
513–522, New York, NY, USA, 2010. ACM.

[6] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. M. Cumby. A search engine for finding highly relevant
applications. In ICSE (1), pages 475–484, 2010.

[7] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and
S. Ofek-Koifman. Personalized recommendation of social software
items based on social relations. In Proceedings of the third ACM
conference on Recommender systems, RecSys ’09, pages 53–60, New
York, NY, USA, 2009. ACM.

[8] E. Hatcher, O. Gospodnetic, and M. McCandless. Lucene in Action.
Manning, 2nd revised edition. edition, 8 2010.

[9] T. Hattori. Wikigramming: a wiki-based training environment for
programming. In Proceedings of the 2nd International Workshop on
Web 2.0 for Software Engineering, Web2SE ’11, pages 7–12, New
York, NY, USA, 2011. ACM.

[10] D. R. Hofstadter. Analogy as the core of cognition. In D. Gentner,
K. J. Holyoak, and B. N. Kokinov, editors, The Analogical Mind:
Perspectives from Cognitive Science, pages 499–538. MIT
Press/Bradford Books, 2001.

[11] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 117–125.
ACM, 2005.

[12] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling
reusable software out of thin air. IEEE Software, 25(5):45–52, 2008.

[13] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A study of the
difficulties of novice programmers. SIGCSE Bull., 37:14–18, 2005.

[14] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann.
Design lessons from the fastest Q&A site in the west. In Proceedings
of the 2011 annual conference on Human factors in computing
systems, CHI ’11, pages 2857–2866, New York, USA, 2011. ACM.

[15] C. McMillan, D. Poshyvanyk, and M. Grechanik. Recommending
source code examples via api call usages and documentation. In
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, RSSE ’10, pages 21–25, New
York, NY, USA, 2010. ACM.

[16] L. Novik. Analogical transfer, problem similarity, and expertise.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 14:510–520, 1988.

[17] C. Parnin and C. Treude. Measuring api documentation on the web.
In Proceedings of the 2nd International Workshop on Web 2.0 for
Software Engineering, Web2SE ’11, pages 25–30, USA, 2011. ACM.

[18] J. Stylos and B. Myers. Mica: A web-search tool for finding api
components and examples. In Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. pages 195 –202, 2006.

[19] A. Sureka, A. Goyal, and A. Rastogi. Using social network analysis
for mining collaboration data in a defect tracking system for risk and
vulnerability analysis. In Proceedings of the 4th India Software
Engineering Conference, ISEC ’11, pages 195–204, New York, NY,
USA, 2011. ACM.

[20] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[21] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for
reusing open source code on the web. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, ASE ’07, pages 204–213, New York, USA, 2007. ACM.

[22] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask
and answer questions on the web? (nier track). In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11,
pages 804–807, New York, NY, USA, 2011. ACM.

[23] L. von Ahn. Human computation. In Design Automation Conference,
2009. DAC ’09. 46th ACM/IEEE, pages 418 –419, july 2009.

[24] M. Vukovic. Crowdsourcing for enterprises. In Services - I, 2009
World Conference on, pages 686 –692, july 2009.

[25] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok. Interpreting
tf-idf term weights as making relevance decisions. ACM Trans. Inf.
Syst., 26:13:1–13:37, June 2008.

42

