The (R)Evolution of Social Media in Software Engineering

Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

Fernando Figueira Filho
Universidade Federal do Rio

Leif Singer
University of Victoria
Victoria, BC, Canada

Isinger@uvic.ca

Grande do Norte, Natal, Brazil

fernando@dimap.ufrn.br

ABSTRACT

Software developers rely on media to communicate, learn,
collaborate, and coordinate with others. Recently, social
media has dramatically changed the landscape of software
engineering, challenging some old assumptions about how
developers learn and work with one another. We see the
rise of the social programmer who actively participates in
online communities and openly contributes to the creation
of a large body of crowdsourced socio-technical content.

In this paper, we examine the past, present, and future
roles of social media in software engineering. We provide a
review of research that examines the use of different media
channels in software engineering from 1968 to the present
day. We also provide preliminary results from a large
survey with developers that actively use social media to
understand how they communicate and collaborate, and to
gain insights into the challenges they face. We find that
while this particular population values social media,
traditional channels, such as face-to-face communication,
are still considered crucial. We synthesize findings from
our historical review and survey to propose a roadmap for
future research on this topic. Finally, we discuss
implications for research methods as we argue that social
media is poised to bring about a paradigm shift in software
engineering research.

Categories and Subject Descriptors

H.5.3 [Group and Organization Interfaces]: Computer-
supported collaborative work

General Terms

Human Factors

Keywords

Social Media, Software Engineering, Collaboration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.
FOSE’14,May 31 — June 7, 2014, Hyderabad, India

ACM 978-1-4503-2865-4/14/05
http://dx.doi.org/10.1145/2593882.2593887

100

Brendan Cleary
University of Victoria
Victoria, BC, Canada
bcleary@uvic.ca

Alexey Zagalsky

University of Victoria
Victoria, BC, Canada
alexeyza@uvic.ca

1. INTRODUCTION

A few years after the term “software engineering” was
coined at a 1968 NATO conference [49], Weinberg
published his acclaimed book on the “Psychology of
Computer Programming.” [78] Weinberg emphasizes that
although programming is an activity that can be
performed alone, it relies on extensive social activities as
developers will often have to ask others for help.

The need to collaborate and interact with others has
only increased over time. Even solitary developers need to
interact directly or indirectly with others to learn, to
understand requirements and to seek feedback on their
creations. In addition to face-to-face communication,
developers use many channels to interact. Communication
media, such as the telephone, email, chat, bug tracking
tools, and code hosting sites, play a pivotal role in
collaborative software engineering activities, thus helping
to shape and form co-located and distributed online
communities. However, media channels have different
affordances for communication, coordination, collaboration
and knowledge flow.

In just the past decade, the world has seen a massive
and widespread adoption of social media—media which
supports many-to-many communication through social
networks. The speed and scale of adoption of social media
such as Facebook and Twitter is unprecedented in the
history of technology adoption [12]. These tools alone have
had a profound and disruptive impact on many domains,
most notably journalism and politics. Likewise, GitHub®
(a social coding site) and Stack Overflow? (a question and
answer Website) have become part of the standard toolset
for many software engineers in just the last few years.

In this paper, we consider the impacts of social media
on software engineering activities. We propose that social
media in software engineering is contributing to a paradigm
shift in three significant ways:

1. The rise of the social programmer that actively
participates in online development communities;

A rapid increase in the creation and diffusion of
technologies and crowdsourced content; and
The formation of ecosystems around
technology, media, and developers.

2.

3. content,

"https://github. com
’http://stackoverflow.com

This paper showcases a research roadmap that outlines
opportunities and challenges arising from the use of social
media in software engineering. We include a history of
media use in software engineering, from the very first days
of software engineering in the late 1960s, to the present day
use of social media, preceded by a conceptual background
on the role of media in communities. The paper concludes
with a discussion on the impact social media is having on
software engineering research directions and methods.

2. BACKGROUND

In this section, we provide background on communities
of practice and the role media plays in shaping those
communities. We then examine how social media has
contributed to a participatory culture within communities
of practice. Finally, we discuss communities of practice in
software engineering.

2.1 Role of Media in Communities of Practice

According to Wenger [79], communities of practice
arise when “groups of people who share a concern or a
passion for something they do and learn how to do it better
as they interact reqularly.”

Communities of practice support ongoing learning [37]
for core and peripheral members, and act as a “living
curriculum for the apprentice” with long term members in
the community sharing practices, resources and tools with
each other and with newcomers. People outside the
community recognize that the community exists and value
the skills and relationships members have. Social scientists
study communities of practice to discern how people learn
from one another and to wunderstand successful
relationships and practices. Such insights can be helpful in
building new communities and sharing work practices.

Media play an essential role in supporting
communication, collaboration and coordination activities
within a community of practice. McLuhan proposed that
media shapes society and culture—he defines media as
“ways of communicating that are extensions of a human
being’s senses.” [46] He describes a history of media
starting with the tribal era, where speech shared in a
group was a unifying act leading to enthusiasm and
spontaneity. This gave way to the literary era with the
development of writing which could be referred to multiple
times and reflected on independently. The literary era was
succeeded by the print era, where the Gutenberg printing
press facilitated mass reproductions, allowing people to
consume the content in isolation. The introduction of
instant communications brought about by the telegraph,
telephone, radio, TV, information technology and Internet
led to the electronic era. The constant and immediate
contact the electronic era afforded across boundaries led to
what McLuhan coined the global village.

As new forms of media emerge, McLuhan suggests we
consider how these new channels enhance pre-existing
forms of media, how they may make other forms of media
obsolete, how they may retrieve affordances from older
forms of media and what they may reverse (or flip) into if
taken to the extreme. Moreover, McLuhan emphasized
that media determine who can participate, the scale of
information that can be distributed, how fast it is delivered
and how it will be presented. For example, mass media
channels prevalent in the early days of the electronic era,

101

such as radio, TV, newspapers and websites, support
one-to-many spectator style communication, often leading
to hierarchical structures in organizations and society.
Postman, who also studied media extensively, refers to a
media ecology and suggests we undertake “the study of
environments: their structure, content and impact on
people.” [58] Thus, Postman reminds us that when media is
studied, it is important to consider the full landscape of
the channels used, their underlying context and the
impacts on all stakeholders.

2.2 Social Media and Participatory Cultures

The development of the World Wide Web and cheap
access to Internet communication (e.g., email and online
chat) has greatly impacted communities of practice. The
biggest changes have occurred in the past 5 - 10 years with
the creation of a different kind of media: social media.
They support enhanced communications that spread faster
and with wider reach. Social media (e.g., Facebook,
Twitter) are cheaper and easier to use than traditional
mass media, with many social media channels supporting a
many-to-many distribution mechanism. There are fewer
barriers to participation, and merely interacting with the
media is an implicit form of participation (e.g., clicking on
a link reinforces the value of that link). Social media often
result in increased transparency, they are self-reinforcing in
terms of participation and bring with them new forms of
value. Social media are recognized as a disruptive force in
many domains [1] and they have been increasingly adopted
in corporate settings.

Jenkins et al. [30] observed that social media bring about
a participatory culture with the following attributes:

e Low barriers to artistic expression and engagement

e Strong support for creating and sharing one’s creations
with others

e Informal mentorship—what is known by
experienced is passed along to novices

e Members believe their contributions matter

e Members feel some degree of social connection and care
what others think about their creations

the

This new participatory culture calls for a new form of
literacy—social media literacy skills that are ways of
interacting with a larger community of practice in contrast
to individual skills used for personal expression through
mass media.

Although many see the recent widespread adoption of
social media as a major change in human culture, Tom
Standage [67] speculates that social media is a retrieval of
the previous two-way horizontal models of communication
that relied on social connections rather than the one-way
vertical communication that is typical of mass media.
Standage provides “social media” examples from ancient
times, such as from the days of the Romans where slaves
(inexpensive to their owners) were used for sending,
copying and replying to letters between friends and family.
He suggests that the mass media era was a relatively
short-lived anomaly in human culture and that social
media is more of the norm. One criterion he gives for
media to be deemed “social” is that they must be relatively
inexpensive and easy to use.

Standage also reminds us of the “coffee houses” from the
17th and 18th centuries where people in the UK gathered

to discuss and read letters of news, a precursor to the
mass-produced printed news. Coffee house articles were
composed of other news, similar to today’s news
aggregators or Pinterest. Coffee houses were an “alluring
environment” where serendipity was commonplace as
newsletters contained all sorts of re-posted information. It
is interesting to note that the number of copies / reprints /
repurposed content indicated the success of a message, just
as the number of retweets / reblogs / repins may be
measures of value today.

McLuhan also highlighted the participatory nature of
media, but he did not witness the current phenomenon of
social media. For the purpose of distinguishing this more
recent phenomenon from the preceding electronic era, we
refer to this recent time period as the social era. What
sets the social era apart from the electronic era is the
inexpensive and low barrier to publish, as well as the
rapidly spreading peer-to-peer, large-scale communications
made possible by social media.

2.3 A Participatory Culture in Software
Engineering

Communities of practice are prevalent in software
engineering, and we can see them forming to share ideas
about software architecture, testing, requirements and
around specific technologies. They have been the topic of
much research, particularly in the open source realm which
relies on intense communication. With the advancement of
remote systems and the wider availability of the Internet in
the early 80s, free and open source software systems were
developed by small groups of developers. However, it
wasn’t until 1993 that Linux broke the mold using what
Raymond [59] refers to as a “Bazaar” model of
programming, an approach which accepted contributions
from anyone and adopted a mantra of “release early, release
often.” Communities of practice naturally formed around
free and open source projects, with communication tools
such as email and version control playing an important role
in the community formation. The open source movement
further bears all the hallmarks of a participatory culture,
with lower barriers to entry, strong support for co-creation
of artifacts, mentorship opportunities and appreciation of
social relationships.

A participatory culture cannot be found in open source
projects alone. Global software development [27] and
collaborative software development [81] have become
increasingly popular modes due to relatively inexpensive
and readily available communication tools, such as email,
chat, bug tracking and version control. Whitehead [80]
notes that the two threads of appropriation of novel
communication tools and model-based development
together distinguish how collaboration in software
engineering results in unique collaboration challenges and
requirements. Seven years ago, he acknowledged a trend of
Web-based collaboration tools that might support
distributed teams better—a scenario that has become very
real, as attested by the recent interest in remote work
supported by asynchronous communications via Web-based
tools (cf. e.g., Fried and Heinemeier Hansson [20]).
However, the increase in interest in remote work and the
popularity of recommendations on the topic show that
distance still matters [50].

102

Nowadays, we see continuing widespread adoption of
social media and social features in coding tools.
Throughout the emergence of this participatory
development culture, media has played a pivotal role.
Next, we review how the use of different media has evolved
within software engineering.

3. COMMUNICATION MEDIA IN
SOFTWARE ENGINEERING: A
RETROSPECTIVE

An important role of media in any socio-technical
endeavor is the transfer of knowledge between stakeholders.
This facilitates individual learning and expression, as well
as coordination and collaboration between members in a
community. Wasko et al. [77] distinguish different theories
of knowledge: knowledge embedded in people that
may be tacit or embodied within people’s heads, with its
exchange typically done one-on-one or in small group
interactions; knowledge as object that exists in artifacts
and can be accessed independently from any human being;
and knowledge as public good that is “socially
generated, maintained and exchanged within emergent
communities of practice.” We use these three types of
knowledge to categorize how media support the flow of
knowledge in software engineering. We also add a fourth
type of knowledge that has recently become relevant in
software engineering: knowledge about people and
social networks.

Our discussion of the channels for each of these
perspectives focuses on how the various channels evolved
and influenced one another over time (cf. Fig. 1). Some
channels overlap multiple perspectives. The timeline of
media use in software engineering is further discussed at
the end of this section (cf. Section 3.5).

3.1 Communicating Knowledge Embedded in
People’s Heads

In the early history of software development, the main
communication channel was face-to-face, as most groups
and teams at that time were co-located. Furthermore,
reliance on other members was not that significant as most
programs written in the 1960s and early 1970s tended to
be small [64]. Face-to-face interaction was essential to
support learning and problem solving, to build common
ground [13] and to support collaborative system design and
development. Face-to-face is often espoused to be the best
way to exchange tacit knowledge, i.e., knowledge that
resides in programmers’ heads. Face-to-face interactions
are still a mainstay of communication in software projects
(cf. results of our survey, Sec. 4.2)—however, many
projects today are developed by engineers that may have
never met face-to-face and never will. In some cases, video
chat tools such as Skype or Google Hangouts are used
as a substitute.

The telephone was also an important medium in
supporting the early days of collaboration in software
engineering. De Marco and Lister [16] say the following
about the phone in their 1987 book: “The telephone is here

to stay. You can’t get rid of it, nor would you probably
want to.” However, they worried about it causing
interruptions.

De Marco and Lister also discussed the importance of

Knowledge embedded in ...

social | 'societies
networks °
I @
2 |_Blogs |
S
community -::-’ _
Books & Documents :’9’, | Slashdot | [Hacker News |
O
s | Trello |
- : [Basecamp |
. Email Lists <]
project -
artifacts | 'prgject Workbook VisualAge AT | Jazz/RTC |
Erny S
eople's
peop Face to Face Skype
heads
Telephone
1968 1970s 1980s 1990s 2000s 2010s

mostly non-digital TGN [Socially enabled |

Figure 1: Media channels over time and how they support the transfer of developer knowledge. Note that
some channels overlap multiple types of knowledge communication.

email as a communication channel between developers.
When comparing email to the telephone, they remarked:
“The big difference between a phone call and an electronic
mail message is that the phone call interrupts and the
e-mail does not. The trick isn’t in the technology; it is in
the changing of habits.” This tension between synchronous
and asynchronous communication channels—and even
workflows—is garnering renewed attention now that
remote work and open source development models are
being experimented with at young software companies (cf.
e.g., Holman [29] about workflows at GitHub).

Instant messaging is also used by many developers to
support one-on-one discussions and exchange knowledge.
One such tool is ICQ. It was developed in 1996 and is still
in use today with more recent versions of ICQ including
support for video messaging and social networking. Many
developers also make use of text-based group chat
systems for communicating about development, such as
IRC. Handel et al. studied a customized version of an IRC
chat tool and found that globally distributed developers
predominantly used it for technical discussions [26], but
they also found that adoption was inconsistent across
development teams [28]. Tools that are popular today
include the Web-based archivable Campfire® or HipChat®.

3.2 Communicating Knowledge Embodied in
Project Artifacts

By project artifacts, we refer to communication that
specifically discusses code, documentation, test cases,
requirements, designs and tasks. There are numerous tools
used to communicate about these artifacts—we discuss a
small sample to demonstrate their breadth and scope.

3https://campfirenow.com
“https://www.hipchat.com

103

In his landmark book The Mythical Man Month,
Brooks [8, p. T74] discussed the role of a project
workbook as a comprehensive way to externalize critical
knowledge about the development of the OS/360 system in
1965. The project workbook was used to document system
knowledge, track all project activities, including rationale
for design decisions and change information across
versions. But Brooks noted that after six months, the
workbook was five feet thick and inserting new pages and
adding margin notes to maintain it was onerous.
Introducing microfiche helped with the size issue, but
highlighting and commenting became impossible.

The workbook was eventually replaced with more

sophisticated tools, notably IDEs (Integrated
Development — Environments), online hyperlinked
documentation, project forges, version control

systems, bug trackers and project management tools.
Over time, these different tools incorporated various
communication media and social features to support
collaborative and distributed interactions.

In 1995, Ward Cunningham designed wikis—mnotably
the WikiWikiWeb—as a medium for collaboratively editing
software documentation [40]. From this technology,
Wikipedia emerged in 2001. Wikis were innovative because
they allowed authors to easily link between internal pages
and include text for pages that did not yet exist [40]. Wikis
have been used to support defect tracking, documentation,
requirements tracking, test case management and for the
creation of project portals [41]. Wikis are also used
frequently in global software development [36] and remain
integrated in collaborative and social coding sites [35].

In the free and open source world, SourceForge® has
been widely used since 1999, and offers support for hosting
projects and version control. A recent study by Guzzi et

Shttp://sourceforge.net

al. [24] showed most of the communication about
development issues occurred through the code repository
discussion feature rather than email.

GitHub, launched in 2008, markets itself as a social
code hosting site. GitHub uses Git, a distributed version
control system for large-scale collaboration. For projects
and teams, GitHub fosters collaboration through several
awareness features, integration with external tools and
support for asynchronous workflows (cf. e.g., Pham et
al. [57]). It has recently overtaken SourceForge as the
largest code hosting siteS.

In 2010, Treude et al. [71] investigated how a
community portal for IBM’s Jazz development
environment is used to provide awareness of ongoing
activities in a hybrid (open/closed) software development
community. Jazz was designed as an IDE with
collaboration in mind, and its dashboards and activity
feeds played a major role in maintaining awareness—a
necessary feature to support effective coordination.

Email lists have played an ongoing role in keeping
members up to date with project activities. They have
been used as a channel to disseminate commit logs from
software repositories [23], supporting project awareness
and coordination. They have also been wused for
asynchronous code review in open source projects by
sending small patches to members for review [63, 62].

Gutwin et al. [23] studied communication in three open
source projects and found that email lists supported
information seeking, dissemination of project knowledge, as
well as developer activities and project discussion. They
further found that chat—in this case, IRC—was used for
informal communication about project artifacts. Although
not archivable, important aspects of those discussions
would be siphoned off to the email lists. Modern team- and
project-oriented chat systems used by development teams
support the archiving of content and offer project support
(such as Campfire and Gitter”).

Gutwin et al. also noted that important information
about code was sometimes fragmented across the three
channels used in those projects (email lists, chat and
commit logs). Their study found that it was often difficult
to ensure that information was read by the right people in
a timely fashion. We suspect that fragmented
communication may be an even bigger concern today given
the increase in the number of communication channels
used by many developers.

3.3 Communicating Knowledge Socially
Constructed in Community Resources

Usenet was developed in 1980 as a “worldwide
distributed Internet discussion system” and soon supported
the flow of knowledge about technologies and projects
across team, project, and community members. Users
could read and post threaded messages, and posts were
referred to as “news” belonging to specific categories or
“newsgroups”. It was a precursor to forums that are more
widely used in recent years. Usenet differed from other
bulletin boards at the time as it did not rely on a central
server and a dedicated administrator: it was distributed
among a network of servers that stored and forwarded

Shttp://redmonk.com/sogrady/2011/06/02/
blackduck-webinar

"https://gitter.im

104

messages to one another using “news feeds”. But in other
ways, it resembled the asynchronous text-based discussions
on bulletin boards.

Wasko et al. [77], in 2000, studied how Usenet played a
role in knowledge management in three development
communities of practice. In their survey, they found
various reasons for participation: tangible returns such as
the speed in getting multiple answers to questions, staying
up to date, interaction with the community, reciprocity,
enjoyment, as well as enhanced reputation.

Web-based archiving of Usenet posts began in 1995 at
Deja News, which was acquired in 2001 by Google; the
archives are now accessible by Google Groups. However,
Google Groups is more than a gateway to Usenet
archives—it provides discussion groups, mainly used as
forums and mailing lists for software developers, and serves
as a collaboration tool for global software engineering [36].

Many of the features in Usenet can now be seen in more
modern media—most notably, Stack Overflow, a
question and answer Website. Stack Overflow was created
in 2008 and has experienced rapid uptake. Even though
Stack Overflow has many parallels to Usenet, it differs in
several important ways. Firstly, there is moderation of
both questions and answers, which improves the
trustworthiness and value of the content. Secondly, Stack
Overflow has a gamification [17] aspect with reputation
scores and the ability to earn new powers through
participation, which may encourage involvement through
intrinsic and extrinsic motivation. Finally, the Stack
Overflow community responds very quickly: over 92% of
questions are answered within a median time of 11
minutes [42]. Recently, Stack Overflow has been studied by
several researchers [42, 2, 14, 83] and is rapidly growing
into a formidable documentation resource. E.g., Parnin et
al. [54] find that it provides very good coverage for
documentation on open source APIs.

Stack Overflow and many of the other channels
mentioned in this section use a feature that was somewhat
of a poster child for Web 2.0: Folksonomies [56], also
known as collaborative tagging or social bookmarking,
comprise a user-generated system of -classifying and
organizing online content into different categories by using
metadata such as tags. What began with Delicious and
Flickr in 2003 and 2004, respectively, soon spread to many
other tools and Websites. In previous work, we studied the
potential for social tagging in the IDE [68] and the use of
tags for work item management in Jazz [70].

Blogs are another important community-based
knowledge resource used in software engineering. First
used in 1994 and widely adopted by 1999, with blogs,
everyone can broadcast. They are frequently used by
developers to document “how-to” information, to discuss
the release of new features and to support requirements
engineering [53]. Moreover, some practitioners advocate
that every developer should have a blog®, arguing that blog
posts help exchange technical knowledge among a larger
audience than email messages. Pagano and Maalej [52]
examined both blogs and commit messages and found a
relationship between blogging and commit behavior.
Parnin and Treude [55] found that blogs play an effective
role in documenting APIs: by analyzing the Google results

8http://bit.1ly/Every-Developer-Needs-a-Blog

for API calls of the jQuery API, they found that 87.9% of
the API methods were covered by blogs, mainly featuring
tutorials and personal experiences about those API
methods.

Audio and video podcasts are a medium closely related
to blogs and used by software developers in a similar
fashion: for learning [33], keeping up to date with the
latest trends and technologies [82], for (job) training and as
how-to guides. Podcast use in higher education has
increased since 2005 [9, 6] and has been shown to be
effective [33].

Social news Websites are another medium
experiencing a recent surge in popularity. Many of these
sites [75] and aggregators allow developers to disseminate
knowledge, discover new software and keep up to date.
Some of the most popular among developers are Digg?,
reddit'?, and Hacker News'!. Lampe and Resnick [34]
analyzed Slashdot'?, a precursor to modern news Websites,
and found that the basic concept of distributed moderation
works well. However, their analysis revealed that it often
takes a long time to identify especially good comments,
that incorrect moderation activities are often not reversed,
and that non top-level comments and comments with low
starting scores did not receive as much consideration from
moderators as other comments did.

Lerman [39] examined the incentives that drive user
participation on Digg and found competition with other
community members, social acceptance, and internal
factors. Findings also indicated that user participation is
non-uniformly distributed with a few top users doing a
large fraction of the work. Gilbert [21] studied Reddit
votes and found a widespread underprovision of votes on
Reddit, where half of the most popular links were
overlooked the first time they were submitted, thus
jeopardizing its main purpose.

The importance of news Websites like Hacker News for
software projects is beyond aggregating news and keeping
up to date, as reaching the top of a site can provide
valuable feedback and help the growth of a project’s users,
contributors and the community as a whole. These sites
are a specific form of social navigation, which was first
defined by Dourish and Chalmers [18] as movement from
one item to another when provoked as an artifact of the
activity of another or a group of others.

Microblogging is another channel that plays an
increasingly important role in curating community
knowledge. Twitter, the first microblogging tool and one of
the most popular social media channels, was created in
2006 as a way to share short messages with people in a
small group. The idea was to share inconsequential
ephemeral information, but it has become an important
medium in many domains. Twitter is seeing significant
adoption in software engineering.

Several researchers have investigated how software
developers and software projects make use of Twitter [7,
76], finding that Twitter is used to communicate issues,
documentation, to advertise blog posts to its community,
as well as to solicit contributions from users. In a recent

http://digg.com
Ohttp://www.reddit . com
"https://news.ycombinator.com
2http://slashdot.org

105

study [66], we found that developers who adopted Twitter
use it to filter and curate the vast amount of technical
information available to them. We found it brought
benefits in terms of awareness, learning, and relationship
building. Developers who feel that Twitter benefits them
rely on a variety of strategies for posting and reading
Twitter content. Twitter shares some commonalities with
Usenet, in that people join Twitter to discover information,
to stay up to date and to be part of the community. Yet,
Twitter is also quite different from newsgroups. With
Twitter, users follow individuals, but create the community
they wish to be a part of themselves. Twitter also includes
a few signals that can help assess content and people, such
as a user’s number of followers or the number of retweets
for an individual tweet.

Social media is not only a disruptive force for developers,
but also for enterprises. However, applying social media
concepts in enterprise environments raises various concerns
(e.g., privacy, security, distractions, ownership, etc...),
which has led to the emergence of Enterprise Social
Media [38]. These are social media adjusted for use in
enterprise contexts that try to mitigate some of the
concerns. Yammer'® is a microblogging service much like
Twitter, but designed for corporate use. Zhang et al. [84]
investigated how employees of a large enterprise use
Yammer and how its usage differs from Twitter. They
found that employees use Yammer for news about groups
and less for posting content about themselves. Dullemond
et al. [19] also studied the use of a microblogging tool
within a small distributed software company where moods
are communicated explicitly as part of posts.

3.4 Communicating Knowledge About
Developers Through Social Networks

Sites that are primarily focused around social networking
features are becoming very popular in development
communities—just as Facebook has been very popular with
the general population. This kind of media is new in
software engineering, although implicit social networks
have been present in other media channels, such as through
newsgroup or mailing list affiliations. However, with these
new media, the affiliation is one of the primary features of
the medium, and as such, is made visible. Facebook is
used by some developers to support programming
interactions, such as local meet-ups. Sites such as
LinkedIn are more focused on professional connections,
but Barzilay et al. [2] explored the practice of example
usage in software development by observing software
developers’ exchanges in LinkedIn discussion groups.

There are also specific sites designed to showcase
developer activities and skills, such as Masterbranch'*
and Coderwall'®, while many other developer tools now
also integrate social networking features, such as GitHub.
Below, we summarize some recent studies that have studied
the impact of social networking on software engineering.

Dabbish et al. [15] conducted a study of GitHub users.
They found that the visibility of developer activities and
profiles on GitHub influences a project’s success by
motivating others to contribute. Developers further decide

Bhttps://www.yammer . com
“https://masterbranch.com
Bhttps://coderwall.com

which projects are worth contributing to by determining
which projects have frequent contributions or contributions
from high status developers [72]. High status developers
are those that have already done interesting work.

In a similar study, Marlow et al. [44] explored how users
on GitHub form impressions of others through GitHub’s
transparency. They found that developers assess each other
to learn about projects and their status. These impressions
guide future developer interactions and influence how much
one would trust contributions from someone they had not
interacted with before. Pham et al. [57] interviewed
GitHub users with regard to testing practices and found
that when assessing contributions from others, project
owners behave differently based on how much they trust
the contributor. Unknown developers’ code would be more
thoroughly scrutinized than code from trusted people.

Marlow and Dabbish [43] studied how employers assess
developers based on their GitHub profiles, which provide
cues about their activities, skills, motivations and values.
These cues were regarded as more reliable than resumes.
Employers who were interviewed by Marlow et al. said that
open source contributions indicated that a developer had the
“right” set of values and was not in software development for
purely financial reasons. Also, contributions to high status
projects were said to demonstrate “some level of proficiency.”

Singer et al. [65] conducted a similar study, but
investigated social media profiles of developers in general.
This included GitHub, profile aggregators such as
Coderwall and Masterbranch, Twitter, Stack Overflow, and
other sites. They found that profiles can be hard to
understand or evaluate for some recruiters. To assess the
real merit of a developer’s public activities, one would
always need to look at actual artifacts, such as code, tests,
documentation or discussions. Developers also assessed
recruiters and companies, trying to gauge their
authenticity and suitability as colleagues. Most developers
and recruiters were aware that the absence of signals does
not mean much—a developer with few or no public
activities might just be a private person or work
exclusively on closed source projects.

Capiluppi et al. [10] further argue that information that
helps assess others will allow for more merit-based and less
credential-based evaluation of potential candidates,
possibly leveling the playing field for those who don’t have
access to traditional education but are skilled and desirable
developers.

Together with Begel and Bosch, we interviewed
representatives of GitHub, the Microsoft Developer
Network (MSDN), Stack Exchange and TopCoder
about the role of social networking in their companies [3].
All four sites provide features to increase the visibility of
developers and developer activities. On GitHub, one can
follow particularly high status developers and watch their
activities. MSDN and Stack Exchange have explicit
gamification elements to assist in assessment and discovery
of content, and to support strong engagement.
Interestingly, not having explicit connections between users
was a conscious decision for Stack Exchange: the company
feels users should concentrate on the content, and status
should not play into a question or answer being up-voted.
The Stack Exchange interviewee mentioned that the
hardest part about building the Stack Exchange Network
was not creating the software that runs it—the challenge

106

was building the community, its mechanisms, and the
processes that support it. Similarly, the TopCoder'®
representative also mentioned that building a functioning
community was the most difficult aspect in building the
business. Both GitHub and Stack Overflow (the most
notable of the Q&A sites Stack Exchange hosts) relied on
high status developers to seed their communities.

In summary, the pervasive use of public social media by
developers makes the participants and their relationships
more transparent to software engineering researchers who
want to understand how methods and tools are used in
practice. While the mining of software repositories has
given us access to software products for a relatively long
time, the recent accessibility of developers’ interactions and
their relationships can provide more qualitative insights
than had previously been available. Research so far has
indicated that social networking features influence which
projects developers participate in, impact project success,
and play a role in developer assessment and recruitment.
Gamification elements add feedback and improve trust in
developer contributions. We believe studies on social
networking and their associated gamification aspects will
become more prevalent in the future of software
engineering research, adding to these preliminary insights.

3.5 Summary and Discussion

The timeline (see Figure 1) shows an approximation of
when some popular tools and media channels were adopted
or innovated by software engineers. The timeline gives a
rather simplified view of what is really a very complex
history of how media channels evolved and were
appropriated in software engineering. The channels are
organized using the different types of knowledge exchanged
over time (knowledge in developer heads, knowledge
embedded in project artifacts, knowledge embedded in
community resources and knowledge about or
communicated through social networks). Note that some
tools overlap multiple types of knowledge, and a single tool
may encompass multiple social features within them. E.g.,
IDEs such as Jazz support Web portals, dashboards,
tagging and newsfeeds; Github, while primarily a code
hosting site, has social networking features. Consequently,
it is not always possible to distinguish a tool for a channel
from a feature of a channel: e.g. tagging is a feature of
many channels, but it is also a primary activity on sites
such as Pinterest or Delicious.

Over time, we see the emergence of channels that are
increasingly socially enabled, and a rise in the adoption of
channels for exchanging community knowledge and social
networking content. The timeline highlights how we have
entered a social era in terms of media use in software
engineering. We loosely categorize tools as 1) non-digital,
2) digital or 3) digital and socially-enabled. Distinguishing
digital from non-digital is trivial, but characterizing tools
as socially-enabled is not as clear cut. This is particularly
the case for tools (e.g., SourceForge) that have evolved
over time with the addition of social or social networking
features. By social, we refer to features that promote and
afford participation through the transparency of identity
(e.g., user profiles), content and interactions [15]. This
transparency further leads to social signals that themselves

http://www.topcoder.com

Non-digital

Face-to-face, Books and Magazines

Digital

Web Search, Content Recommenders, Rich Content, Private
Discussions, Discussion Groups, Public Chat, Private Chat

Digital and socially enabled

Feeds and Blogs, News Aggregators, Social Bookmarking,
Question & Answer Sites, Professional Networking Sites,
Developer Profile Sites, Social Network Sites, Microblogs,
Code Hosting Sites, Project Coordination Tools

Table 1: The channels respondents were able to
choose from in our survey. The survey included
examples for each channel.

become useful content (e.g., the number of votes associated
with an answer or the number of followers a user has).

We can expect to see even more software development
tools become socially enabled by the inclusion of features
such as commenting, tagging, like buttons and the ability
to follow others. But adding these features to a tool is not
sufficient to promote community participation. As the
interviews with Stack Overflow and TopCoder have shown,
building software for communities is much easier than
building the communities themselves. It may be more
likely that new social tools that we can’t yet anticipate
may lead to a disruptive change in how developers work.

The adoption of social media is relatively new and has
taken some parts of the industry and research community
by surprise. Although we have some insightful research
findings about the implications of this paradigm shift on
software engineering, we lack insights on how various
media channels are used in combination to support
software engineering activities. That is, we need more
understanding about the landscape of social media use
within software engineering ecosystems before we lay out a
roadmap for future work.

4. DEVELOPER SURVEY
EXPLORING MEDIA USE

As discussed, there has been some research on how the
recent generation of developers use media to support
software engineering. But most of these studies considered
how just one or two channels impact software development
activities. One exception is a pilot survey by Black et
al. [5] conducted in 2010 which asked about the use of a
broad set of channels in software engineering. To try to
understand how the newer generation of developers use a
broad range of social media channels, and thus to
anticipate important opportunities and challenges for a
roadmap for future work, we conducted a survey with
members of a thriving participatory community through
GitHub.

4.1 Method

We emailed our survey!'” to 7,000 active GitHub users in
November and December 2013. 1,516 developers responded
(21% response rate). We asked them about demographic

2013:

"URL to the survey: http://thechiselgroup.org/2013/
11/19/how-do-you-develop-software

107

Channel
Code Hosting

Reasons for Importance

Provides the state-of-the-art tools and
lowers the barriers for collaboration.

I 1018

F2F Eases team communication, facilitates
problem solving and knowledge
sharing.

512

Provides rapid access to answers and
code examples produced by the crowd.

. 496
Web Search

Q&A

Immediate access to vast amounts of
information, supporting learning and
problem solving.

I 429
Microblogging

Allows for keeping up with new
technologies, practices and people.

I 221

Private chat

Single point of coordination for
remote teams, supporting real-time
collaboration.

I 194
Feeds and blogs

Provides personalized information for
developers to keep up with latest
practices and technologies.

I 190

Table 2: The top channels mentioned and why they
are important (bars show # of respondents selecting
that channel as most important, bar color indicates
analog, digital or social channels).

information such as gender, age, and location, their
programming experiences, technologies and tools they use,
and asked them about the number of projects they
participate in, whether they program professionally, and
about the sizes of project teams they had worked with.
Findings from our literature review and from earlier
studies we conducted prompted us to find out which media
channels developers use for activities such as staying up
to date, learning, connecting with other developers
or coordinating. For each of those tasks, we asked them
to select the channels they use for them. Respondents were
able to select from those shown in the columns in Table 1.
We asked the respondents to indicate the three most
important channels that they use to support their software
engineering activities, and to tell us why they selected
those channels. We also asked respondents how
overwhelmed they feel when using the tools selected,
whether they have privacy concerns when sharing
information on those channels, whether they suffer from

distractions, and what other challenges they may
experience.
Limitations: We recognize that our population of

respondents is biased towards developers that firstly use
GitHub, and secondly that they are more likely to use
social tools since GitHub is also a social tool by design.
That said, this is the population we wished to study in our
survey. From the survey responses we were able to
determine that developers on GitHub further tend to
develop programs for the Web as opposed to systems

1000 -

750 -

500 -

<22 23-32 3345 46-60

(a)

61+ N/A

91%

(b)

USA)

China ==
Canada [mm
India =
Brazil =
Australia =
France
Germany ™
male M
Russia ™
Great Britain ™
B female other ———
N/A ‘ ‘ ‘
¥ unknown 0 200 400 600

Figure 2: Background of the respondents: (a) age, (b) gender and (c) location

programming, adding another bias to the responses. Some
of the questions may have been ambiguous especially to
non-native English speakers. Finally, we only present some
preliminary findings in this paper; future work may reveal
additional insights.

4.2 Preliminary Findings

An in-depth analysis of the survey findings is
forthcoming; in the meantime we provide preliminary data
to help us understand the kinds of media channels this
population uses to communicate and collaborate. Figure 2
shows an overview of the respondents’ backgrounds.
Figure 2(a) shows the age distribution, which is strongly
skewed towards relatively young developers. Figure 2(b)
shows that the overwhelming majority of our respondents
were male—only 3% identified themselves as female, while
6% did not answer this question. Finally, Fig. 2(c) shows
that many respondents were from the USA, but there was
also a wide distribution among other unspecified countries.

Calculated over all survey questions that asked about
channel usage, our respondents said they use a median of
12 unique channels (mean: 11.55, min: 1, max: 21). While
25% of the respondents use between 14 and 21 unique
channels. Table 2 shows the top channels mentioned by
respondents and summarizes the main reasons for
importance that were given. The bars indicate how many
developers named the channel as one of their three most
important ones for development. While code hosting sites
may be in the lead due to the GitHub-centric population
we surveyed, it is surprising that face-to-face
communications are still considered very important. Q&A
sites are considered almost equally important.

Survey respondents considered Code Hosting Sites the
most important channel, as they provide state-of-the-art
tools and lower the barriers of entry for developers
willing to share their work with others and get
feedback. Respondents also valued being able to access
other developers’ posts to learn about new
technologies and practices in software engineering.

Despite the fast pace of evolution in communication
technologies and tools, we found that face-to-face
communication is still considered the best channel for
supporting team communication and effective
collaboration. Olson and Olson [50] emphasized the role
of synchronous interactions in providing rapid feedback
among team members and in supporting design and
collaborative problem solving.

108

QEA sites such as Stack Overflow and Web search
engines (e.g., Google), play a crucial role in providing
access to a vast amount of information produced by
the crowd. Microblogging adds another layer of social
interaction by supporting relationships, discovery, and
awareness of people, trends, and practices.

Private chat provides an important alternative to
face-to-face interactions as it enables real-time
collaboration and a single point for coordination,
but still falls short at supporting features that are present
in collocated interactions, such as spatiality of reference

and shared local contexts. Feeds and Blogs are a
particularly important medium for conveying
personalized information and for communicating

developments and ideas about software engineering
concerns, practices, and technologies.

400

300

Overwhelmed
200

M Privacy
B Distraction

Figure 3: Results from the Likert-type scale
questions (where 1 was strongly disagree and 7 was
strongly agree) about three different challenges.

Figure 3 shows a summary of responses to the
Likert-type scale questions asking whether developers are
overwhelmed by the information communicated on the
channels, whether they are concerned about privacy, and
whether they are distracted by the channels they use.
The majority of developers seem to feel overwhelmed and
find that social tools can be a distraction, while privacy
appears to be of less concern.

Table 3 provides qualitative data on the challenges most
often mentioned in the survey, all of which will be
discussed in more detail in Sec. 5. From the perspective of
individual developers, media literacy was often
mentioned as an important challenge. Developers have to
learn the conventions and technical nuances of new media
that appear from time to time and have to learn how to
use them effectively with their teams—who may not always
adopt the new channels.

Developers
“The biggest challenge from social tools
during development is when a new one 1is
adopted into the mix, the learning curve
associated with a new tool eats time unless
the program is intuitive and pointed.”

Literacy

Communities
“Misinformation is easy to communicate
and propagate. People can be rude or
obnoxious on social mediums, distracting
from a discussion. The asynchronous
nature of social media interaction can often
lead to missed information or incomplete
contexts for understanding information.”

Anti-social
behavior

Content
“I sometimes feel lack of quality content
on social networks, q€a sites — especially
when it comes to incompetent answers to
questions I ask. So the challenge is to
filter the information you get from all of
the sources.”

Trusting
content

Ecosystem of Media Channels
“I worry that we are relying on many of
these ‘free’ services, which in the end are
not free — they simply have a different
payment model (that appears to change).”

Vendor
lock-in

Table 3: Some key challenges reported in our survey.

In communities, anti-social behavior was mentioned
as a constant threat to smooth interaction. Many media
have either a low bandwidth or are asynchronous, so
misunderstandings are more likely to happen. The
perceived anonymity on the Internet may also play a role.

Regarding knowledge, knowing when and whether to
trust content is regularly an issue. While sites like Stack
Overflow have voting mechanisms in place that help
surface the high quality content, niche technologies might
simply have an adoption rate that is still too low to yield
reliable trust signals. Other sites may lack explicit signals
altogether, so developers are forced to interpret surrogate
signals based on their experience and intuition.

From the perspective of many interrelated media channels
as an ecosystem, several respondents were concerned about
vendor lock-in. Developers are by now aware that free
services will always have a high potential for downsides, be
it possible discontinuation or marketing-related changes to
a business model.

4.3 Discussion

On average, our respondents indicated that they use 12
channels to support their software engineering activities.
We see that some recent newcomers in terms of
communication channels used in software engineering see
widespread adoption, and that those tools are also among
the most important as selected by the respondents.

Although our survey respondents are those that work on
projects mediated through GitHub, face-to-face
interactions were also rated very highly. In future work, we
will analyze the results from the survey examining possible
correlations between channels used and developer factors.

109

A preliminary interactive visualization—a work in
progress—of the results can be viewed online'®. We use
some of these initial results and combine them with our
retrospective of software engineering media research from
Sec. 3 to build a roadmap for future work.

5. FUTURE OF SOCIAL MEDIA
SOFTWARE ENGINEERING

We build on existing research into social media use in
software engineering (Sec. 3) and the preliminary findings
of our survey (Sec. 4) to develop a roadmap for future
work. We pay attention to McLuhan’s guidance (see
Sec. 2.1) as he suggests we consider not just how media
enhances, replaces and retrieves elements of what has come
before, but also that we pay attention to what it reverses
into, if taken to the extreme. We consider opportunities
and challenges that relate to the following aspects
(following Postman, see Sec. 2.1):

IN

e the developers;

e the communities the developers belong to;

the content and knowledge that is created by the
developer community; and

the ecosystem of media channels that shape the
community and content exchanged.

5.1 The Emergence of the Social Programmer

Developers participate in communities of practice because
they wish to directly contribute to the community’s public
good or to form relationships with other developers. They
also participate for more personal reasons—in particular, to
improve their technical skills and positively influence their
career prospects. However, there are challenges in managing
interruptions and acquiring social media literacy skills.

5.1.1 A Living Laboratory for Learning

Before the innovations of the Internet and social media,
most learning occurred in the classroom, through self
training or through training on small teams [78]. These
days, developers acquire extensive skill-sets by
participating in online communities that showcase current
technology trends. This was particularly evident in the
studies on Twitter (cf. 3.3). Networking allows developers
to acquire diverse skills by connecting with different groups
and communities that suit their learning needs or interests.
Novices can seek out like-minded developers as learning
partners or mentors. Social coding sites that support open
source projects, such as GitHub and Twitter (e.g., through
the #pairwithme tag on Twitter), provide mechanisms to
make those connections.

Sites such as GitHub provide rich opportunities for use
in university courses—Arie van Deursen discusses how
he successfully used GitHub in a software architecture
course'®. Furthermore, online learning environments,
such as Khan Academy and Coursera, provide additional
mechanisms to foster self-paced learning in online
communities. Jenkins reminds us that “appropriation
enters education when learners are encouraged to dissect,
transform, sample or remiz existing cultural materials.” [30]

Bhttp://fose2014.thechiselgroup.org
http://avandeursen. com/2013/12/30/
teaching-software-architecture-with-github

We already see the effects of this kind of encouragement in
social coding sites. Social sites are likely to revolutionize
how software engineering is taught in the classroom.
Future work should consider how developers use tools
such as GitHub and Stack Overflow in conjunction with
other channels to support their ongoing learning, as well as
how their use impacts the quality of the software they
build. From an enterprise perspective, how can
organizations support this mode of learning and balance
learning with short term productivity goals? Are
developers joining the best communities to support their
learning needs, and are they choosing to learn the most
suitable development technologies and learning those in an
effective way? Are they using their time effectively?

5.1.2 Expanding Career Opportunities

As we discussed in Sec. 3.4, understanding the impact of
transparent participation on career development is
a current research focus. The participatory development
communities that we see forming through tools such as
Twitter, GitHub and Stack Overflow, as well as developer
profile aggregator sites such as Masterbranch and
Coderwall, provide further mechanisms for developers to
advertise their skills and experience, as well as for
employers and recruiters to seek out suitable employees or
team members. However, there is still much to learn about
these mechanisms, as one developer responded to our
survey: “It can be challenging to understand which tools to
invest time in, and how to use them to best promote oneself
to further one’s career.” This phenomenon is relatively new
and its impact on developer behaviors and team churn
have yet to be studied in depth.

5.1.3 Maintaining a State of Flow

DeMarco and Lister in their Peopleware book discuss the
importance of maintaining a sense of flow during
development [16]. Flow refers to a psychological concept of
being fully immersed in a task, where the participant
barely notices the passage of time. Achieving a sense of
flow requires a balance along an anxiety-boredom
continuum. If the task is too easy, the individual will be
bored, and if too difficult, they will be stressed. DeMarco
and Lister worried about the telephone or email
interrupting developers’ sense of flow. Interrupting flow is
potentially even more of a concern given the many channels
developers use today (see Sec. 4). Many of the survey
respondents discussed feeling overwhelmed and distracted
by the vast number of notifications they received and felt
compelled to respond to notifications. Although it is often
possible to customize notifications, every channel does this
differently. On the positive side, gaining quick access to
information may improve flow by reducing anxiety.
More research is needed to understand how developers use
these channels and why some developers struggle while
others succeed at finding a sense of rhythm.

5.1.4 Social Media Literacy for Developers

As some of our survey respondents told us, learning how
to use social media effectively can be a challenge (cf.
Sec.4). But if a user has the right skills, social media can
promote critical thinking [12] and social networking can
improve a developer’s ability to search for, synthesize and
disseminate information [30]. The respondents in our

110

recent Twitter study shared strategies they wuse for
curating their social graph and improving the value they
receive from using Twitter (see Sec. 3.3). Effective use of
social media can also reduce unnecessary communication.
We heard from expert developers that they explicitly post
answers to commonly asked questions on blogs or answer
questions on Stack Overflow to reduce their email volume.

Jenkins suggests a set of social media skills for users that
include [30]: transmedia navigation, the “ability to
follow the flow of stories and information across multiple
modalities”; appropriation, the “ability to meaningfully
sample and remix media content”; multi-tasking, the
“ability to scan one’s environment and shift focus to salient
details as needed”; and collective intelligence, the
“ability to pool knowledge and compare notes with others
towards a common goal.” Soft skills are typically not
taught in university, but are learned “on the job” or by
participation within communities of practice. Do Jenkins’
recommendations for social media literacy also apply to
software development?

5.2 Participatory Development Cultures

Social technologies have enabled participatory cultures
to flourish beyond the constraints of time, space and
group [12], and we can clearly see this influence on the
global software development community. There has already
been some research on communities of practice in software
development (see Sec. 3). Here we propose future work on
increasing the scale of who collaborates, and identifying
new practices that are being shaped and enabled by social
technologies. We also raise the importance of being aware
of the potential for anti-social behaviors and other barriers
to participation.

5.2.1 Increasing the Size of the Crowd

Social media exposes new customers, partners and users
to one another, and social tools like GitHub are designed
with participation in mind. Although GitHub is designed
to encourage participation, non-technical wusers still
reportedly struggle with some of its features. Effective
technical and social media literacy skills will help
facilitate participation, but strong leadership is also
important [12].

The software industry further benefits from
crowdsourcing (participation and feedback from a large
number of users or stakeholders) across customer care,
testing [32], documentation [54] and requirements
gathering [51]. Research into some of these relatively new

phenomena indicates a lack of tool support for
crowdsourcing activities in software engineering [54, 51].
Startup companies understand the importance of

releasing “minimally viable products” early to gain iterative
and valuable customer feedback [61]. But which channels
are the most effective for reaching users and gaining their
feedback and participation? What are the barriers that
may block or turn some potential collaborators away?
What kinds of new tools can entice, improve and capture
crowd-based participation in software engineering? How do
we ensure crowd diversity, as a “smart crowd” depends on
having diverse skills and viewpoints [69]7

5.2.2 Discovering Next, Not Just Best Practices

Our Developer Survey revealed that shared knowledge
and information might be spread across too many channels
and can be easily missed or impossible to find again
(especially with ephemeral channels). Survey respondents
recognized the need to use multiple channels but were
frustrated that others were reluctant to use the same
channels or used them inappropriately (e.g., tweeting
rather than emailing). The issue of private versus public
posting also led to knowledge fragmentation. However,
missing out on some discussions is not a new problem:
from the earliest days of software engineering,
conversations around the water cooler always meant some
participants were not privy to all relevant discussions.
Nevertheless, articulating and sharing communication best
practices would alleviate some of the issues from
knowledge fragmentation across multiple channels.

But following best practices may not be enough [12]. As
new tools are rapidly adopted, appropriated and innovated

by developers, new practices will quickly follow. The
emergence of new practices is driven by both the
transparency and speed of technology diffusion. For

example, we were able to observe how developers learn
testing practices through the transparency of
GitHub [57], as well as how social technologies support the
matching of talent to task in the case of peer
review [63]. Kazman and Chen observed that some
crowdsourced development can be described using the
metaphor of a “metropolis” [32]. What other new
development models and practices are emerging from
this participatory culture?

5.2.3 Knowing When Social Becomes Anti-Social

The transparency of social media may be highly effective
at encouraging shared creativity, but the same
transparency can also be intimidating to more private or
shy individuals. One concern that was raised in our survey
is the risk of ambiguous communication even when the
parties speak the same language. Many expressed that
face-to-face communication is still the preferred mode of
working when possible.

Many of the Developer Survey respondents also
expressed worries about being personally attacked if
they say something inappropriately, advise poorly or
inadequately explain something. In such situations,
communication on social channels may alienate people,
leaving them more reluctant to share. Social media also
makes it easy to communicate directly with participating
stakeholders, but sometimes the communication may be
invasive (e.g., users asking too many questions, or
unsolicited contact from recruiters). Another issue is the
poor articulation of community expectations
concerning when communication should be acknowledged
or addressed.

There are other long-standing differences that may lead
to complex social issues. Exclusion from a community may
result from poor natural language proficiency (English is
the language of choice in many channels), time zone
differences, cultural issues and belonging to certain
minorities. E.g., female participation tends to be low on
many of the more transparent social channels [74]—we also
saw this in our survey (cf. Sec.4). Understanding how
these differences can be addressed is paramount.

111

5.3 Software Knowledge as Public Good

Social media is the underlying fuel for collaborative
development and crowdsourcing of content in software
engineering. The content created in a community of
practice is referred to as “public good” by Wasko et al. [77],
and in this case, such content refers to not just code, but
also documentation, as well as content about
developers (their skills, accomplishments and activities).
Social media further transforms communications into
content [12]. In this section, we consider how this content
is a source of big data which can be analyzed for making
predictions and recovering traceability in software projects.
We also look at the opportunities that arise from the speed
of communication and technology diffusion made possible
by the Internet and social media. Finally, we consider
issues with finding salient information from a mass of
communication channels, as well as issues with trust.

5.3.1 Mining Social Media in Software Development

Mining of software repositories has been an active
area of research in the past decade?. That research has
also considered other communication channels, most
notably email archives as email lists are frequently used for
exchanging software repository artifacts [47, 48, 4]. There
are even more analysis opportunities of the more recently
adopted social media channels used in software engineering
(e.g., Twitter and Stack Overflow). Tools that integrate
multiple channels, such as GitHub, make it easier to relate
information that was previously stored in silos and had to
be linked to facilitate analysis. Many researchers are using
these richer resources to support new lines of research
inquiry about development (e.g., the MSR challenge for
2014 is based on GitHub projects?!).

The output from these analyses show potential for
improved predictions about software success, failure and
reliability, improved traceability, monitoring support for
project health and adoption, and finally, insights about
developers’” own activities [65]. Aggregations of
communicated information also show promise at forming
documentation and learning resources [55, 54]. At the
same time, this newly available data brings with it new
challenges that require the attention of researchers [31].

5.3.2 Software Engineering at the Speed of Light

The adoption of social media has occurred at a much
faster ~rate than any previous communication
technology [12]. These channels facilitate technology
diffusion that self-accelerates adoption. This rapid diffusion
may lead to a competitive edge for some (faster access to
new technologies and practices, ongoing feedback, and
access to collaborators and users [66]). But what effects
does this have on software quality? How does diffusion
and discovery occur across an ecosystem of channels?
Which combinations of channels and work practices
should be used or avoided? How can organizations and
developers effectively stay up to date and learn in such a
rapidly changing landscape? What challenges will faster
technology diffusion and adoption bring in the future in
terms of maintenance and evolution?

Onttp: //msrconf . org
Zhttp://2014 .msrconf . org/challenge . php

5.3.3 Finding the Signal in the Noise

Many-to-many communication that occurs through
multiple channels inevitably leads to a mass of information
distributed within a community. Many respondents to our
survey reported feeling overwhelmed by the amount of
information and had trouble finding or discovering salient
information. The developers that are social media literate
and have carefully curated their social graph seemed to
suffer less from this problem. Finding documentation that
relates to a particular technology version was also a
reported problem, particularly on GitHub due to what has
been termed “forking hell”??: as GitHub makes it very easy
to fork a project and some of a project’s many forks could
include crucial improvements not yet merged back into the
main project, it can be hard sometimes to find the ideal
fork to use. Improved search tools and recommenders
could assist with this challenge?.

5.3.4 Trusting Content

A concern that was raised numerous times in the
Developer Survey is that of assessing the quality of the
content available on social media channels. In terms of
developer skills, there were concerns that some developers
may falsely embellish their skills. For crowdsourced
documentation, although widely thought to be powerful,
there were concerns that it may be out of date. There
were also concerns with having to understand multiple
conflicting documentation resources and which source to
trust, especially if there was insufficient information on the
people posting the documentation. Although there are
mechanisms for showing trustworthiness (e.g., voting up on
Stack Overflow), perhaps relating these to a developer’s
social graph (i.e., improved traceability) may improve one’s
confidence on the trustworthiness of content. However,
some of the gamification mechanisms that are used on
some sites (such as on Stack Overflow) may lead to content
that is not as useful or authentic if the size of the crowd
curating it is rather small.

5.4 Improving the Social Media Ecosystem
for Software Engineering

One of the most interesting findings from the Developer
Survey is the number of channels some developers use today.
Respondents reported using an average of 12 channels, with
25% using between 14 and 21 channels. Recently we see
the development and adoption of channels that are highly
specialized (e.g., Stack Overflow for Q&A), and yet we also
see the integration of multiple channels or features in a single
tool (such as the case with GitHub). In this section, we
report on some opportunities for new channels and features
that would be more applicable to software developers, as well
as discuss challenges that arise from relying on proprietary
channels and the issues that may arise if social media are
overused or pushed to the extreme.

nttp://bit.1ly/dada-beatnik-forking-hell and http:
//zbowling.github.io/blog/2011/11/25/github/

23There are workshops on both of these topics at ICSE 2014,
see http://2014.icse-conferences.org/workshops

112

5.4.1 Social Media Channels for Developers

In our survey, some respondents indicated poor support
for explaining design concepts or algorithms in the code.
Several other respondents also mentioned issues when the
tools they use lack integration with programming artifacts.
This lack of support caused friction when switching
between tools and led to poor traceability between
discussions and software artifacts. Some channels are
specifically designed with development in mind (e.g., Stack
Overflow and Hipchat), but other channels lack facilities
for sharing and discussing code. To reduce friction from
switching between tools and integrated content, some
researchers have proposed integrating social features in
the IDE (e.g., integrating microblogging in the IDE [25,
60]). At the same time, there is momentum to migrate the
IDE towards the Web (73, 22].

Whatever the form of improved integration, we
anticipate that the coding tools and environments
developers use will become more social. Understanding the
affordances that the different features can offer to
software developers is important, but we also need to
develop theories about ideal combinations of tools.
Achieving an effective media ecology, according to
McLuhan “means arranging various media to help each
other so they won’t cancel each other out, to buttress one
medium with another.” Likewise, in software development
we need research to understand how to package or
integrate the best tools for developers of the future so that
they not only have the most appropriate communication
tools available, but also that the tools together address the
knowledge fragmentation issues that may occur.

5.4.2 Reducing Risks from Vendor Lock-in

Another concern raised in our survey is that
mission-critical knowledge can become “trapped” in
proprietary tools that are outside developers’ control. If
such proprietary sites go down (or disappear completely),
this knowledge could become inaccessible or lost. Nicholas
Carr further discusses the problem of relying on online
information resources when he questions “is Google making
us stupid?” [11]. We found from the survey that developers
are heavily reliant on Google as it directly links to other
resources, such as Stack Overflow and Twitter. Many of
our respondents talked about the importance of these
latter resources and their concern that the community
assets embedded in them might not always be accessible.
Although there are data dumps available, those require
effort to use. As new channels are adopted, what will
happen to content stored on old channels? The same
lock-in concern also applies to the wvaluable profile
information within these and other proprietary sites that
developers rely on for their portfolios.

5.4.3 Exploring the Dark Side of Social Media

As McLuhan reminds us, every media can have negative
effects when taken to the extreme or abused. Therefore,
what are the downsides of using social media in software
engineering? While technology diffusion may seem like a
positive outcome of social media use, is the mass of
technology niches, such as special purpose programming
languages, components and tools, that social media
supports ultimately good for the industry, or does it lead
to maintenance issues in the future? And is there a risk of

the same channels being used to diffuse harmful content,
such as spam or information that will harm security?

Some survey respondents discussed a need for improving
bounded transparency in social media channels.
Communications that should be private or anonymous are
posted publicly, and vice versa. For example, such a
context collapse [45] could negatively influence future
job opportunities. Several survey respondents mentioned
their desire for electronic channels that are truly ephemeral
(whereas much communication in current social channels
forms a digital tattoo). Unfortunately, many channels
either lack support for bounding transparency, or if they
do have support, some users do not know how to use those
privacy features effectively. = Some survey respondents
expressed fear of misusing channels as they were unsure
how publicly or widespread their posted information would
be diffused.

Another tradeoff arises when users make use of free
services in exchange for their personal information.
Identity linking across networks (which may or may not
be desirable) is also a challenge in how people use social
media in knowledge work [12]. We anticipated that
developers would be concerned by these and other privacy
issues, but the answers to our survey revealed that the
majority are not as concerned as we had thought.

Finally, it is important to note that many developers do
not openly participate in online communities because they
do not have a need to participate. Scott Hanselman labels
such developers as “Dark Matter Developers’®*. But perhaps
dark matter developers use many of the resources (that is,
“lurk” there), but don’t leave a trace. Does the community
miss out when they do not participate?

6. IMPLICATIONS FOR RESEARCHERS

“It is the framework which changes with each new
technology and not just the picture within the frame.” [46]

McLuhan reminds us that when media or technology
change, we must adapt how we study that technology and
the questions we ask. In the case of our research, we found
it was necessary to study social media using social
media. Understanding the culture and nuances of social
media language enabled us to first reach out to and
connect with study participants, and then understand
what they had to tell us.

We attracted approximately 1,500 responses to our
survey (over 21% response rate) by reaching out to GitHub
developers®®, and by informing our participants that our
results would be openly shared as we have done with other
studies—e.g., we tweeted and blogged about the results
from our study of Twitter [66] and received excellent
feedback that helped us validate our findings and add
additional insights®°. The GitHub participants we
connected with enthusiastically answered our survey and
gave us excellent insights, even with a rather long and
tedious survey (see Sec. 4). One respondent mentioned
they felt they were contributing to their own well-being by
participating in our research: “Good to see a survey on this

%"http://wuw.hanselman. com/blog/
DarkMatterDevelopersTheUnseen99.aspx

25We used the email addresses they had published on GitHub
2nttp://blog.leif .me/2013/11/
how-software-developers—-use-twitter

113

topic. It is wonderful to be part of a global developer
movement and have the entire world of developers helping
each other.”

Chui et al. note that researchers are generally slower to
adopt social media than knowledge workers [12]. This may
put some researchers at a disadvantage as we speculate
that social media is poised to cause a paradigm shift in
some aspects of research, particularly in research that
involves socio-technical aspects of software engineering.
One opportunity that is however evident for researchers is
that there is an increase in openly available data that
researchers can analyze and use to publish.

Many software engineering researchers have already
established excellent social media literacy skills. They use
their social graph to gain research data and insights, and
to form alliances with developers and collaborations
with other researchers.

Furthermore, blogging about research results can lead to
thousands of views in a day, gaining public feedback from
real practitioners?”. Thus, we suggest that social media
can have a transformative impact on software
engineering research, as researchers have the opportunity
through social media to influence and guide the industry.
As a research community we should ask ourselves whether
we want to focus our energies on describing what is
happening, predict what happens next, or strive to
influence the future.

7. CONCLUSIONS

From the very early days of software engineering,
software developers have used, innovated and adopted
media to increase their social interactions with other
developers. The social interactions that were possible
dramatically changed with the innovation of the Internet,
and communities of practice quickly emerged that went
beyond co-located developers or small networks connected
by leased lines.

The more recent innovations in social media have led to
yet another paradigm shift in software development, with
highly tuned participatory development cultures
contributing to crowdsourced content and supported by
media that has become increasingly more social. Social
features are being layered on top of traditional channels,
but we also see the galloping and widespread adoption of
new social tools for developers, such as GitHub, Stack
Overflow and developer social networking tools.

The most recent generation of developers, in particular
millennials®®, are both used to and expect collaboration.
This newer generation of developers are adept at using
social media for communicating, coordinating with others,
and for learning. They are by nature open, transparent
and expect to share. They are tightly coupled to their
devices and to their content, and they tend to care more
about their public image than their corporate or
company-internal image. It is also anticipated that
millennials will change their jobs many more times than
older generations, and they have fostered the ability to
learn new technologies easily. Through the widespread

*"http://blog.ninlabs.com/2012/05/
crowd-documentation and http://blog.leif.me/2013/
11/how-software-developers-use-twitter/

nttp://en.wikipedia.org/wiki/Millennials

adoption and appropriation of social media by this
generation, we see a participatory culture emerging in
software engineering.

Tools such as GitHub lower the barriers to joining and
contributing to development communities, and developers
do so because they care about social connections with
other developers. They wish to mentor or be mentored by
others and they believe their contributions matter.
Participation in these communities provides opportunities
for improving their skills, and they know how to use their
social connections to discover and learn about emerging
technical trends.

The number and scale of teams and communities that
developers belong to has radically increased since the early
days, and the breadth of media channels they use to
participate in those communities has likewise increased.
The participatory development culture has become a
network of tightly coupled ecosystems consisting of
developers, communities of practice, shared content and
media channels. The adoption of social media and the
resulting paradigm shift this has caused opens up many
interesting and exciting future research opportunities.

8. ACKNOWLEDGMENTS

We thank Cassandra Petrachenko for editing support,
Daniel German for stimulating discussions and feedback on
our paper, and Jim Herbsleb, Elisabetta Di Nitto and
Alfonso Fuggetta for detailed suggestions. Finally, we
thank the survey respondents for sharing their insights.

9. REFERENCES

[1] A. Archambault and J. Grudin. A longitudinal study
of facebook, linkedin, and twitter use. In Proc.
SIGCHI Conf. Human Factors in Computing Systems
(CHI ’12), pages 2741-2750, NY, USA, 2012. ACM.
O. Barzilay, O. Hazzan, and A. Yehudai. Using social
media to study the diversity of example usage among
professional developers. In Proc. 19th ACM SIGSOFT
Symposium and the 13th European Conf. Foundations
of Software Engineering, ESEC/FSE ’11, pages
472-475, New York, USA, 2011. ACM.

A. Begel, J. Bosch, and M.-A. Storey. Social
networking meets software development: Perspectives
from github, msdn, stack exchange, and topcoder.
Software, IEEE, 30(1):52-66, 2013.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and

A. Swaminathan. Mining email social networks. In
Proc. 2006 Int. Workshop Mining Software
Repositories, MSR 06, pages 137-143, New York,
USA, 2006. ACM.

S. Black, R. Harrison, and M. Baldwin. A survey of
social media use in software systems development. In
Proc. 1st Workshop Web 2.0 for Software Engineering,
pages 1-5. ACM, 2010.

S. B. Bongey, G. Cizadlo, and L. Kalnbach.
Explorations in course-casting: Podcasts in higher
education. Campus-wide information systems,
23(5):350-367, 2006.

G. Bougie, J. Starke, M.-A. Storey, and D. M.
German. Towards understanding twitter use in
software engineering: Preliminary findings, ongoing
challenges and future questions. In Proc. 2Nd Int.

114

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

Workshop Web 2.0 for Software Engineering, Web2SE
11, pages 31-36, New York, USA, 2011. ACM.

F. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 1975.

G. Campbell. Podcasting in education. Educause
Review, 40(6):32-47, 2005.

A. Capiluppi, A. Serebrenik, and L. Singer. Assessing
technical candidates on the social web. Software,
IEEE, 30(1):45-51, 2013.

N. Carr. The shallows: What the Internet is doing to
our brains. WW Norton & Company, 2011.

M. Chui, J. Manyika, J. Bughin, R. Dobbs,

C. Roxburgh, H. Sarrazin, G. Sands, and

M. Westergren. The social economy: Unlocking value
and productivity through social technologies.
http://wuw.mckinsey.com/insights/high_tech_
telecoms_internet/the_social_economy, July 2012.
H. H. Clark and S. E. Brennan. Grounding in
Communication, chapter 7, pages 127-149. American
Psychological Association, 1991.

B. Cleary, C. Gomez, M.-A. Storey, L. Singer, and

C. Treude. Analyzing the friendliness of exchanges in
an online software developer community. In 6th Int.
Workshop Cooperative and Human Aspects of Software
Engineering (CHASE2013), pages 159-160, 2013.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in GitHub: transparency and collaboration in
an open software repository. In Proc. ACM 2012 Conf.
Comput. Supported Cooperative Work, pages
1277-1286. ACM, 2012.

T. DeMarco and T. Lister. Peopleware: Productive
Projects and Teams. Addison-Wesley, 1987.

S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and
D. Dixon. Gamification. using game-design elements
in non-gaming contexts. In PART 2—Proc. 2011
annual conf. extended abstracts Human factors in
computing systems, pages 2425—-2428. ACM, 2011.

P. Dourish and M. Chalmers. Running out of space:
Models of information navigation. In Proc. of HCI ’94,
Glasgow, Scotland, 1994. ACM Press.

K. Dullemond, B. van Gameren, M.-A. Storey, and
A. van Deursen. Fixing the “out of sight out of mind”
problem: One year of mood-based microblogging in a
distributed software team. In Proc. 10th Working
Conf. Mining Software Repositories, MSR, ’13, pages
267276, Piscataway, NJ, USA, 2013. IEEE Press.

J. Fried and D. H. Hansson. Remote: Office Not
Required. Ebury Digital, 2013.

E. Gilbert. Widespread underprovision on reddit. In
Proc. 2013 Conf. Comput. Supported Cooperative
Work, CSCW ’13, pages 803-808, New York, USA,
2013. ACM.

M. Goldman, G. Little, and R. C. Miller. Real-time
collaborative coding in a web ide. In Proc. 24th annual
ACM symposium User interface software and
technology, pages 155-164. ACM, 2011.

C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, CSCW 04,
pages 72-81, New York, NY, USA, 2004. ACM.

24]

[25]

[26]

27]

[28]

[29]

[30]

31]

[32]

33]

[34]

[35]

[36]

37]

[38]

A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and
A. van Deursen. Communication in open source
software development mailing lists. In Proc. 10th Int.
Workshop Mining Software Repositories, pages
277-286. IEEE Press, 2013.

A. Guzzi, M. Pinzger, and A. van Deursen. Combining
micro-blogging and ide interactions to support
developers in their quests. In Software Maintenance
(ICSM), 2010 IEEE Int. Conf. Soft. Maintenance,
pages 1-5, 2010.

M. Handel and J. D. Herbsleb. What is chat doing in
the workplace? In Proceedings of the 2002 ACM
Conference on Computer Supported Cooperative Work,
CSCW 02, pages 1-10, New York, NY, USA, 2002.
ACM.

J. Herbsleb and D. Moitra. Global software
development. Software, IEEE, 18(2):16-20, 2001.

J. D. Herbsleb, D. L. Atkins, D. G. Boyer, M. Handel,
and T. A. Finholt. Introducing instant messaging and
chat in the workplace. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’02, pages 171-178, New York, NY, USA, 2002.
ACM.

Z. Holman. How github works: Be asynchronous.
http://zachholman.com/posts/
how-github-works-asynchronous, 2011.

H. Jenkins, K. Clinton, R. Purushotma, A. J.
Robison, and M. Weigel. Confronting the challenges of
participatory culture: Media education for the 21st
century.
http://digitallearning.macfound.org/atf/cf/
%TBTE4A5CTEO-A3E0-4B89-AC9C-E807E1BOAE4EY 7D/
JENKINS_WHITE_PAPER.PDF, 2006.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining github. In 2014 11th Working
Conference on Mining Software Repositories (MSR)
(to appear), 2014.

R. Kazman and H.-M. Chen. The metropolis model a
new logic for development of crowdsourced systems.
Communications of the ACM, 52(7):76-84, July 2009.
S. Lakhal, H. Khechine, and D. Pascot. Evaluation of
the effectiveness of podcasting in teaching and
learning. In World Conf. E-Learning in Corporate,
Government, Healthcare, and Higher Educ., volume
2007, pages 6181-6188, 2007.

C. Lampe and P. Resnick. Slash(dot) and burn:
Distributed moderation in a large online conversation
space. In Proc. SIGCHI Conf. Human Factors in
Computing Systems, CHI 04, pages 543-550, New
York, USA, 2004. ACM.

F. Lanubile. Social software as key enabler of
collaborative development environments.
http://wuw.slideshare.net/lanubile/
lanubilesse2013-25350287, 2013.

F. Lanubile, C. Ebert, R. Prikladnicki, and

A. Vizcaino. Collaboration tools for global software
engineering. IEEE Software, 27(2):52-55, 2010.

J. Lave and E. Wenger. Situated learning: Legitimate
peripheral participation. Cambridge University Press,
1991.

P. M. Leonardi, M. Huysman, and C. Steinfield.

115

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Enterprise social media: Definition, history, and
prospects for the study of social technologies in
organizations. Journal of Computer-Mediated
Communication, 19(1):1-19, 2013.

K. Lerman. User participation in social media: Digg
study. In Web Intelligence and Intelligent Agent
Technology Workshops, 2007 IEEE/WIC/ACM Int.
Conf., pages 255-258, 2007.

B. Leuf and W. Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley
Professional, 2001.

P. Louridas. Using wikis in software development.
IEEE Software, 23(2):88-91, 2006.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann. Design lessons from the fastest q&a
site in the west. In Proc. SIGCHI Conf. Human
Factors in Computing Systems, CHI ’11, pages
2857-2866, New York, USA, 2011. ACM.

J. Marlow and L. Dabbish. Activity traces and signals
in software developer recruitment and hiring. In Proc.
2018 Conf. Comput. Supported Cooperative Work,
CSCW ’13, pages 145-156, NY, USA, 2013. ACM.

J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: Activity traces
and personal profiles in github. In Proc. 2013 Conf.
Comput. Supported Cooperative Work, CSCW 13,
pages 117-128, New York, USA, 2013. ACM.

A. E. Marwick and D. Boyd. I tweet honestly, i tweet
passionately: Twitter users, context collapse, and the
imagined audience. New Media € Society,
13(1):114-133, 2011.

M. McLuhan and Q. Fiore. The medium is the
message. New York, 1967.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case
study of open source software development: the
apache server. In Software Engineering, 2000. Proc.
2000 Int. Conf., pages 263-272, 2000.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309-346, July 2002.

P. Naur and B. Randell, editors. Software
Engineering: Report of a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, Oct.
1968. NATO.

G. M. Olson and J. S. Olson. Distance matters.
Hum.-Comput. Interact., 15(2):139-178, Sept. 2000.
D. Pagano and B. Briigge. User involvement in
software evolution practice: A case study. In Proc.
2018 Int. Conf. Software Engineering, ICSE 13, pages
953-962, Piscataway, NJ, USA, 2013. IEEE Press.

D. Pagano and W. Maalej. How do developers blog?:
An exploratory study. In Proceedings of the Sth
Working Conference on Mining Software Repositories,
MSR ’11, pages 123132, New York, NY, USA, 2011.
ACM.

S. Park and F. Maurer. The role of blogging in
generating a software product vision. In Cooperative
and Human Aspects on Software Engineering, 2009.
CHASE ’09. ICSE Workshop, pages 74-77, 2009.

C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Crowd documentation: Exploring the coverage and
the dynamics of api discussions on stack overflow.
Technical Report GIT-CS-12-05, Georgia Tech, 2012.
C. Parnin, C. Treude, and M.-A. Storey. Blogging
developer knowledge: Motivations, challenges, and
future directions. In Program Comprehension (ICPC),
2018 IEEFE 21st International Conference on, pages
211-214, May 2013.

I. Peters. Folksonomies: Indexing and Retrieval in
Web 2.0. De Gruyter, 2009.

R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of
testing culture on a social coding site. In Proc. 2013
Int. Conf. Software Engineering, ICSE ’13, pages
112-121, Piscataway, NJ, USA, 2013. IEEE Press.

N. Postman. The reformed english curriculum. In

A. C. Eurich, editor, High school 1980: the shape of
the future in American secondary education. Pitman
Pub. Corp., 1970.

E. S. Raymond. The Cathedral and the Bazaar:
Musings on Linuz and Open Source by an Accidental
Revolutionary. O’Reilly Media, 2001.

W. Reinhardt. Communication is the key - support
durable knowledge sharing in software engineering by
microblogging. In Software Engineering (Workshops),
volume 150 of LNI, pages 329-340. GI, 2009.

E. Ries. The Lean Startup: How today’s entrepreneurs
use continuous innovation to create radically successful
businesses. Random House Digital, Inc., 2011.

P. C. Rigby, B. Cleary, F. Painchaud, M.-A. Storey,
and D. M. German. Contemporary peer review in
action: Lessons from open source development. IEEE
Software, 29(6):56-61, 2012.

P. C. Rigby and M.-A. Storey. Understanding
broadcast based peer review on open source software
projects. In Proc. 83rd Int. Conf. Software
Engineering, ICSE 11, pages 541-550, New York,
USA, 2011. ACM.

M. Shaw. Three patterns that help explain the
development of software engineering. In Dagstuhl
Seminar 9635 on History of Software Engineering,
pages 52-56, 1996.

L. Singer, F. Figueira Filho, B. Cleary, C. Treude,
M.-A. Storey, and K. Schneider. Mutual assessment in
the social programmer ecosystem: An empirical
investigation of developer profile aggregators. In Proc.
2018 Conf. Comput. Supported Cooperative Work,
CSCW 13, pages 103-116, NY, USA, 2013. ACM.

L. Singer, F. Figueira Filho, and M.-A. Storey.
Software Engineering at the Speed of Light: How
Developers Stay Current Using Twitter. In
Proceedings of the 2014 International Conference on
Software Engineering (to appear), 2014.

T. Standage. Writing on the Wall: Social Media-The
First 2,000 Years. Bloomsbury Publishing, 2013.
M.-A. Storey, L.-T. Cheng, I. Bull, and P. C. Rigby.
Waypointing and social tagging to support program
navigation. In CHI ’06 Extended Abstracts on Human
Factors in Computing Systems, CHI EA 06, pages
1367-1372, New York, USA, 2006. ACM.

116

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

J. Surowiecki. The Wisdom of Crowds. Doubleday;
Anchor, 2005.

C. Treude and M.-A. Storey. How tagging helps bridge
the gap between social and technical aspects in
software development. In Software Engineering, 2009.
ICSE 2009. IEEE 31st Int. Conf., pages 12-22, 2009.
C. Treude and M.-A. Storey. Awareness 2.0: Staying
aware of projects, developers and tasks using
dashboards and feeds. In Proc. 32Nd ACM/IEEE Int.
Conf. Software Engineering, volume 1 of ICSE ’10,
pages 365-374, New York, USA, 2010. ACM.

J. Tsay, L. Dabbish, and J. D. Herbsleb. Social media
in transparent work environments. In Cooperative and
Human Aspects of Software Engineering (CHASE),
2013 6th Int. Workshop, pages 65—72, 2013.

A. van Deursen, A. Mesbah, B. Cornelissen,

A. Zaidman, M. Pinzger, and A. Guzzi. Adinda: a
knowledgeable, browser-based ide. In Proc. 32nd
ACM/IEEE Int. Conf. Software Engineering- Volume
2, pages 203-206. ACM, 2010.

B. Vasilescu, A. Capiluppi, and A. Serebrenik.
Gender, representation and online participation: A
quantitative study of stackoverflow. In Int. Conf.
Social Informatics. ASE, 2012.

D. M. Virasoro, P. Leonard, and M. Weal. An analysis
of social news websites. In Proc. ACM WebSci’11.
ACM, June 2011.

X. Wang, 1. Kuzmickaja, K.-J. Stol, P. Abrahamsson,
and B. Fitzgerald. Microblogging in open source
software development: The case of drupal using
twitter. IEEE Software, 99(PrePrints):1, 2013.

M. M. Wasko and S. Faraj. “It is what one does”: why
people participate and help others in electronic
communities of practice. The Journal of Strategic
Inform. Systems, 9(2-3):155 — 173, 2000.

G. Weinberg. The Psychology of Computer
Programming. Van Nostrand-Reinhold, 1971.

E. C. Wenger and W. M. Snyder. Communities of
practice: The organizational frontier. Harvard business
review, 78(1):139-146, 2000.

J. Whitehead. Collaboration in software engineering:
A roadmap. In 2007 Future of Software Engineering
(FOSE 07), pages 214-225, Washington, DC, USA,
2007. IEEE Computer Society.

J. Whitehead, I. Mistrik, J. Grundy, and A. van der
Hoek. Collaborative Software Engineering: Concepts
and Techniques, chapter 1, pages 1-30. Springer Berlin
Heidelberg, 2010.

D. W. Wilson. Monitoring technology trends with
podcasts, rss and twitter. Library Hi Tech News,
25(10):8-22, 2008.

A. Zagalsky, O. Barzilay, and A. Yehudai. Example
overflow: Using social media for code recommendation.
In Recommendation Systems for Software Engineering
(RSSE), 2012 3rd Int. Workshop, pages 38—42, 2012.
J. Zhang, Y. Qu, J. Cody, and Y. Wu. A case study of
micro-blogging in the enterprise: use, value, and
related issues. In Proc. SIGCHI Conf. Human Factors
in Computing Systems, pages 123-132. ACM, 2010.

