
Keynote:
Selecting Research Methods for Studying a

Participatory Culture in Software Development
Margaret-Anne Storey
Dept. of Computer Science

University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

ABSTRACT
Recent innovations in social media have led to a paradigm
shift in software development, with highly tuned participa-
tory development cultures contributing to crowdsourced con-
tent and being supported by media that have become in-
creasingly more social and transparent. Never before in the
history of software development have we seen such rapid
adoption of new tools by software developers. But there
are many unanswered questions about the impact this tool
adoption has on the quality of the software, the productivity
and skills of the developers, the growth of projects and tech-
nologies developers contribute to, and how users can give
feedback on and guide the software they use. Answering
these questions is not trivial as this participatory develop-
ment culture has become a virtual network of tightly coupled
ecosystems consisting of developers, shared content and me-
dia channels.

In our studies, we have found that combining research meth-
ods from the social sciences with data mining and software
analytics to be the most promising in terms of revealing ben-
efits and challenges from this adoption of social tools. In this
talk, I share some of the findings from our studies, discuss
the particular research methods we have used, and share our
experiences from using those research methods. I also dis-
cuss how we as researchers leverage social tools and interact
with the participatory development culture to assist with
and help us gain feedback on our research. I close with a
discussion about how other software engineering researchers
could benefit from using social tools and the challenges they
may face while doing so.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-
supported collaborative work

General Terms
Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

EASE ’15 April 27 - 29, 2015, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00.
http://dx.doi.org/10.1145/2745802.2747957

Keywords
Research Methods, Social Media, Software Engineering, Col-
laboration, Empirical Software Engineering

1. INTRODUCTION
Selecting suitable research methods for empirical software
engineering research is ambitious due to the various bene-
fits and challenges each method entails. One must regard
the different theoretical stances relating to the nature of the
research questions being asked, as well as practical consider-
ations in the application of methods and data collection [6].
Furthermore, studying the human and social factors that oc-
cur across distributed virtual or online communities is par-
ticularly difficult.

Our research has investigated how development tools and
communication media that are infused with social features
impact software development communities of practice. Our
findings to date indicate that the adoption of social media
by these communities of developers leads to an emerging
participatory development culture [21].

In this extended abstract, we describe some of the charac-
teristics of this emergent development culture and the tools
that are used to support it. We then discuss the different
tradeoffs and challenges faced in selecting and applying re-
search methods for studying development in online commu-
nities of practice. Finally, we briefly explore how social tools
could foster a more participatory culture in software engi-
neering research and how that may help to accelerate our
impact on software engineering practice.

2. EMERGENCE OF A PARTICIPATORY
DEVELOPMENT CULTURE

Over the past few decades, software development has tran-
sitioned from a predominantly solo activity where develop-
ers create small standalone programs, to a widespread dis-
tributed exercise where hundreds and even thousands of de-
velopers operate within an online community of practice [25]
and create complex software ecosystems (e.g., the Ruby on
Rails project has more than 2500 contributors1). This large-
scale distributed development effort has been made possible
by innovations that include the Internet, the World Wide
Web, sophisticated development tools (e.g., integrated de-
velopment environments, bug trackers, source code reposi-
tories), and rich communication channels (e.g., email and

1https://github.com/rails/rails

https://github.com/rails/rails

1968 1980 1990 2000 20101970

Telephone
Face2Face

Project"
Workbook

Documents

Email

Email Lists

VisualAge
Visual Studio

NetBeans Eclipse
IRC

ICQ Skype

SourceForge
Wikis

Trello
Basecamp
Jazz

Campfire

Google"
Hangouts

Punchcards TFS

Books Usenet
Stack"

Overflow

Tw
itt

er

Google "
Groups

Podcasts
Blogs

G
itH

ub
Conferences

Societies LinkedIn
Facebook

Slashdot HackerNews

Non-digital Digital Digital & Socially Enabled

Masterbranch
Coderwall

Meetups

Ya
m

m
er

Screencasts

Slack

people’s !
heads!

project!
artifacts!

community 
resources!

social  
networks!

Knowledge embedded in: !

Figure 1: Media channels over time and how they support the transfer of developer knowledge.

online chat tools).

Development and communication tools play a critical role
in hosting software, as well as in capturing the history of
how the code was developed and documenting how the code
can be used or potentially changed. The more recent adop-
tion of social tools, such as social networking and blogging
tools, has led to the formation of a participatory development
culture [21] with lower barriers to entry, strong support for
co-creation of artifacts, mentorship opportunities, and ap-
preciation of social relationships [8]. This participatory cul-
ture has lead to the emergence of the social programmer [22],
introduced new means for developers to learn and stay up
to date [18], and changed how developers assess themselves
and others [17, 11].

We now see an increase in both the number of tools devel-
opers use and in the social features these tools provide [21].
These include socially-enabled code hosting tools (e.g., GitHub,
BitBucket), management and collaboration task boards (e.g.,
Trello, ZenHub), focused software development communica-
tion tools (e.g., Slack, HipChat), collaborative screen-sharing
tools (e.g., Screenhero and Nitrous.io), development activity
automation tools (e.g., Hubot), personal and team metric
tools (e.g., WakaTime, iDoneThis), and tools to keep de-
velopers up to date and help them discover important new
technologies (e.g., Hacker News and Twitter).

In Figure 1, we loosely categorize a selection of developer
and communication tools according to four kinds of knowl-
edge they help capture or communicate [24, 21]: knowl-

edge embedded in people’s heads that may be tacit
and is best exchanged one-on-one or in small group interac-
tions; knowledge embedded in development artifacts
that can be accessed directly through a tool; knowledge
stored in a community resource that is socially gener-
ated, maintained and exchanged within emergent communi-
ties of practice; and knowledge about people and social
networks. We see that some communication channels over-
lap multiple types of knowledge as developers may use many
of these tools in flexible ways.

In our recent research, we have been striving to understand
and keep up to date with how developer, communication,
and social tools support or potentially hinder development
within this participatory culture. We studied how devel-
opers use, benefit from, and are challenged by tools that
include email [15], social networking tools [1], Stack Over-
flow [2, 14], software tagging features [20, 23], micro-blogging
tools [18, 5], social coding environments [4, 26], and screen-
casting channels [10]. We also conducted a large-scale survey
with over 2000 developers to investigate which communica-
tion channels developers use for certain activities and the
challenges they may face from using a large number of com-
munication channels [21]. Though this a related research,
we have observed that tools shape and are shaped by the
developers who design and use them.

Never before in the history of software development have
we seen such rapid adoption of new tools by software de-
velopers. There are many unanswered questions about the
impact this tool adoption has on the quality of the soft-

ware, the productivity of the developers and the growth of
projects they contribute to, on the users and how they can
give feedback on and guide the software they use, or on the
skill or technological development of the community as a
whole. Answering these questions is not trivial as it’s influ-
enced by intertwined social, human and technological issues.
In the next section, we discuss the main research methods
we have used in our research, and describe the challenges we
are facing (and expect to continue facing) in future work.

3. RESEARCH METHODS FOR STUDYING
A PARTICIPATORY CULTURE

In our studies of this participatory development culture, our
goal has not been to investigate or experiment with new
tools or ideas (which would point in the direction of experi-
mental studies), but rather to understand the impact of the
social tools developers already adopt on their development
practices and on the community. To study existing practices,
there are two main approaches to choose from. The first re-
lies on mining and analyzing the trace data that developers
leave behind when they use development and communica-
tion tools. The second approach involves the collection and
analysis of participant data from observing, surveying and
interviewing community members. We discuss these two ap-
proaches below and then describe how and why we blend
both in our research.

3.1 Mining software repositories
The prevalence of development, communication and social
tools has led to an increase in the availability of opera-
tional and trace data from programs and developer activ-
ities. From program data, we have runtime traces, program
logs, system events, failure logs, and performance metrics.
From users, we have access to usage logs and user reports,
and from development tools, we have different versions, bug
data, commit data, and testing results.

The research areas of Mining Software Repositories2 and
Software Analytics3 develop methods and tools for mining
and analyzing repository and trace data with the intent to
improve developer productivity and software quality. This
research has resulted in some important innovations and in-
sights, such as bug prediction models and recommendation
tools.

One advantage of research methods that rely on this data is
that the participants make these records with no interference
from the experimenters [12] and therefore the participants
studied are not subject to reactivity. These tools also make
it possible to collect data from a wide array of sources, in-
creasing the external validity of the findings [16]. In the
cases where data is publicly available, it can be easier for
researchers to replicate findings.

A disadvantage is that as more and more tools capture op-
erational data (not from just from developers, but also from
users), researchers have to deal with the increasing vari-
ety, velocity and volume of this big data, making it difficult

2http://2015.msrconf.org/index.php
3http://research.microsoft.com/en-us/groups/sa/
softwareanalyticsinpractice_minitutorial_icse2012.
pdf

and expensive to study. But another—and perhaps more
important—disadvantage concerns the internal validity of
these studies, as such methods may be limited at explain-
ing why or revealing factors that may influence why certain
behaviors or phenomena occur [16].

3.2 Borrowing methods from the social sciences
Although data mining and data analytics have been effective
at describing or predicting certain behaviors, they are not
so effective at explaining why certain behaviors may occur,
or how certain development practices or tools could poten-
tially be improved. Trace data may be poorly linked to the
concepts we wish to explore or understand [9], concepts such
as stakeholder motivations or barriers to community partic-
ipation. When development data is mined, there is often
the underlying assumption that developers are rational “an-
imals”, when in fact they may not be at all rational [7] and
may have private motivations for their actions.

Furthermore, much of the work that is done in developing
software is invisible work [19] and cannot be studied by con-
sidering the development artifacts alone. Naur points out
that viable software is more than just the externalized code
and documentation—it is also dependent on extensive tacit
knowledge that resides in the heads of developers who au-
thored it, maintain it, or use it [13]. And even when de-
velopment activities or development knowledge may be vis-
ible or explicit, this information may be subtly fragmented
across multiple channels and tools [21]. This fragmentation
of developer knowledge and communication is exacerbated
as developers create and adopt more and more tools to sup-
port their development work. Finally, when studying social
media tools, “Dark Matter Developers” that lurk or simply
use information posted on social channels do not leave a
trace behind them; however, our studies need to be aware
of such developers’ needs and influences4.

To study these more subtle yet important human and so-
cial issues, we have borrowed and adapted research methods
(e.g., ethnographies, interviews and surveys) from the hu-
man and social sciences [12]. These methods have given us
important insights into the benefits social tools bring and
the barriers developers may face using development tools
and communication channels to participate.

3.3 Bridging the methodological divide
Clearly there are advantages and disadvantages to the choice
of research methods [6] and certain tradeoffs need to be
made. Siegmund et al. note: “There is an inherent trade-
off in empirical research: Do we want observations that we
can fully explain, but with a limited generalizability, or do we
want results that are applicable to a variety of circumstances,
but where we cannot reliably explain underlying factors and
relationships? Due to the options’ different objectives, we
cannot choose both.” [16] McGrath also describes tradeoffs in
terms of the precision of the data that can be collected, the
realism of the setting studied, and the collected evidence’s
generalizability to the possible population of actors [12].

Our research approach has been to follow a pragmatic ap-

4http://www.hanselman.com/blog/
DarkMatterDevelopersTheUnseen99.aspx

http://2015.msrconf.org/index.php
http://research.microsoft.com/en-us/groups/sa/softwareanalyticsinpractice_minitutorial_icse2012.pdf
http://research.microsoft.com/en-us/groups/sa/softwareanalyticsinpractice_minitutorial_icse2012.pdf
http://research.microsoft.com/en-us/groups/sa/softwareanalyticsinpractice_minitutorial_icse2012.pdf
http://www.hanselman.com/blog/DarkMatterDevelopersTheUnseen99.aspx
http://www.hanselman.com/blog/DarkMatterDevelopersTheUnseen99.aspx

proach by using mixed methods [3] where we let our re-
search questions (which may be exploratory, explanatory or
confirmatory) guide the selection and order of the appropri-
ate research method or methods [6]. In our studies of com-
munication and social channels, the methods we have used
include: mining and analysis of software artifacts, ethno-
graphic observations, and interviews and surveys.

The role of theory in our studies varies greatly depending on
the stage of our research [6]. In the case when we have an
existing (but perhaps preliminary) theory, the theory guides
which variables should be measured. In the case where a
theory is emerging, we may use it to categorize the data.
We have found the need to use multiple methods to assist in
theory development.

Too often researchers divide research methods into qualita-
tive and quantitative camps. Thankfully most research
methods involve the collection of both kinds of data, al-
though a method may favor one kind of data over the other.
In the case of mining, the data is typically quantitative in
nature (but not always, e.g, email communications), and in
the case of participant studies in the field, the data may be
predominantly qualitative, but again not always. For the
large-scale surveys we have conducted (some with over 2000
developers), many of our questions were quantitative (e.g.,
when we probed on the number of developers they collabo-
rated with).

4. TOWARDS A PARTICIPATORY
RESEARCH CULTURE

We have found that social media is causing a paradigm shift
in software engineering (just as it has in domains such as
politics and journalism), and likewise believe that it may
result in changes in our research community.

During the course of our research, we have found it beneficial
to use social media to study social media use in software en-
gineering, and to disseminate our research findings. Under-
standing the culture and nuances of social media language
enabled us to reach out to and connect with study partic-
ipants. In our most recent study, we attracted over 2000
responses to a long and time consuming survey by inform-
ing our participants that our results would be openly shared
as we have done with other studies—e.g., we tweeted and
blogged5 about the results from our study of Twitter [18]
and received excellent feedback that helped us validate our
findings and add additional insights to our research results.
Our blog saw thousands of views in a single day and dozens
of comments from real practitioners. These channels provide
a way for us to validate our findings at a speed and scale
not possible before. As our collaborator, Gousios recently
blogged6: “The benefit is mutual: developers learn about ex-
iting results while our research is getting spread. My blog post
about the results of the ICSE 2015 paper is by far the most
read one in my blog (around 8k views now). I really doubt
that that many people read my paper.” Furthermore, we can
engage in a more in-depth discussion with participants pro-

5http://blog.leif.me/2013/11/
how-software-developers-use-twitter/
6http://www.gousios.gr/blog/
Scaling-qualitative-research/

viding us with a deeper understanding of the phenomena we
study as well as revealing new research questions.

Many software engineering researchers have already estab-
lished excellent social media literacy skills. We have used
our social graph to gain research data and insights, and to
form alliances with developers and collaborations with other
researchers. Just as some software engineers consider Twit-
ter to be an essential tool in keeping up to date on technology
developments [18], we also find it a useful avenue for dissem-
inating our research and learning about related research in
our field. It also becomes a useful backchannel for discussing
research as it is being presented at conferences.

However, there are many challenges and risks from using so-
cial tools in our research community. We mentioned the need
for researchers to develop improved literacy skills, otherwise
they may miss out on research developments. Another risk
is that easier access to participants through public channels
(such as GitHub) may lead to us inadvertently spamming
our participants. We need to take care to reach out to them
when we have very good reasons to do so—one way to ensure
this is to pilot smaller studies and seek feedback on prelimi-
nary findings before reaching out to a wider audience. In our
studies, we make sure to explain the purpose of the study
and its benefits, and not to send invites to the same people
we used for previous studies.

Another issue we need to be aware of is to ensure that we do
not somehow cause harm to our participants. We refer to the
now famous Facebook study that manipulated users’ feeds to
study emotional impact: “Having written and designed this
experiment myself, I can tell you that our goal was never
to upset anyone. I can understand why some people have
concerns about it, and my coauthors and I are very sorry for
the way the paper described the research and any anxiety it
caused. In hindsight, the research benefits of the paper may
not have justified all of this anxiety.” 7

Lastly, our future work should consider if our interactions
with our research participants have an impact on their prac-
tices when we share and discuss our results with them. Al-
though, we have not intended it so far, our research may be
approaching an action research methodology [6].

In conclusion, we suggest that social media can have a trans-
formative impact on software engineering research—through
social media, researchers have the opportunity to influence
and guide the industry. We further propose that researchers
can benefit from the use of social media to help in sharing
and disseminating research results with one another and in
forming collaborations with others. We look forward to dis-
cussing the benefits and challenges of social media use for
both developers and researchers in software engineering.

5. ADDITIONAL AUTHORS
Alexey Zagalsky (University of Victoria, BC, Canada
alexeyza@uvic.ca) and Leif Singer (University of Victoria,
BC, Canada lsinger@uvic.ca).

7https://www.facebook.com/akramer/posts/
10152987150867796

http://blog.leif.me/2013/11/how-software-developers-use-twitter/
http://blog.leif.me/2013/11/how-software-developers-use-twitter/
http://www.gousios.gr/blog/Scaling-qualitative-research/
http://www.gousios.gr/blog/Scaling-qualitative-research/
https://www.facebook.com/akramer/posts/10152987150867796
https://www.facebook.com/akramer/posts/10152987150867796

6. REFERENCES
[1] A. Begel, J. Bosch, and M.-A. Storey. Social

networking meets software development: Perspectives
from github, msdn, stack exchange, and topcoder.
Software, IEEE, 30(1):52–66, 2013.

[2] B. Cleary, C. Gomez, M.-A. Storey, L. Singer, and
C. Treude. Analyzing the friendliness of exchanges in
an online software developer community. In 6th Int.
Workshop Cooperative and Human Aspects of Software
Engineering (CHASE2013), pages 159–160, 2013.

[3] J. W. Creswell. Research design: Qualitative,
quantitative, and mixed methods approaches. Sage
publications, 2013.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in github: Transparency and collaboration in
an open software repository. In Proceedings of the
ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1277–1286, New
York, NY, USA, 2012. ACM.

[5] K. Dullemond, B. van Gameren, M.-A. Storey, and
A. van Deursen. Fixing the “out of sight out of mind”
problem: One year of mood-based microblogging in a
distributed software team. In Proc. 10th Working
Conf. Mining Software Repositories, MSR ’13, pages
267–276, Piscataway, NJ, USA, 2013. IEEE Press.

[6] S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting empirical methods for software
engineering research. In Guide to advanced empirical
software engineering, pages 285–311. Springer, 2008.

[7] R. Harper, C. Bird, T. Zimmermann, and B. Murphy.
Dwelling in software: Aspects of the felt-life of
engineers in large software projects. In Proceedings of
the 13th European Conference on Computer Supported
Cooperative Work (ECSCW ’13). Springer, September
2013.

[8] H. Jenkins. Confronting the challenges of participatory
culture: Media education for the 21st century. Mit
Press, 2009.

[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining github. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014.
ACM.

[10] L. MacLeod, A. Bergen, and M.-A. Storey. Code,
camera action: How software developers document
and share program knowledge using youtube. In 2015
23rd IEEE International Conference on Program
Comprehension (ICPC) (to appear), 2015.

[11] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: Activity traces
and personal profiles in github. In Proc. 2013 Conf.
Comput. Supported Cooperative Work, CSCW ’13,
pages 117–128, New York, USA, 2013. ACM.

[12] E. Mcgrath. Methodology matters: Doing research in
the behavioral and social sciences. In Readings in
Human-Computer Interaction: Toward the Year 2000
(2nd ed. Citeseer, 1995.

[13] P. Naur. Programming as theory building.
Microprocessing and microprogramming,
15(5):253–261, 1985.

[14] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.

Crowd documentation: Exploring the coverage and
the dynamics of api discussions on stack overflow.
Technical Report GIT-CS-12-05, Georgia Tech, 2012.

[15] P. C. Rigby, B. Cleary, F. Painchaud, M.-A. Storey,
and D. M. German. Contemporary peer review in
action: Lessons from open source development. IEEE
Software, 29(6):56–61, 2012.

[16] J. Siegmund, N. Siegmund, and S. Apel. Views on
internal and external validity in empirical software
engineering. In Proceedings of the 37th International
Conference on Software Engineering, ICSE 2015, (to
appear), 2015.

[17] L. Singer, F. Figueira Filho, B. Cleary, C. Treude,
M.-A. Storey, and K. Schneider. Mutual assessment in
the social programmer ecosystem: An empirical
investigation of developer profile aggregators. In
Proceedings of the 2013 conference on Computer
supported cooperative work, pages 103–116. ACM,
2013.

[18] L. Singer, F. Figueira Filho, and M.-A. Storey.
Software engineering at the speed of light: How
developers stay current using twitter. In Proceedings
of the 36th International Conference on Software
Engineering, ICSE 2014, pages 211–221, New York,
NY, USA, 2014. ACM.

[19] S. Star and A. Strauss. Layers of silence, arenas of
voice: The ecology of visible and invisible work.
Computer Supported Cooperative Work (CSCW),
8(1-2):9–30, 1999.

[20] M.-A. Storey, L.-T. Cheng, I. Bull, and P. C. Rigby.
Shared waypoints and social tagging to support
collaboration in software development. In Proc. 2006
20th Anniversary Conf. Comput. Supported
Cooperative Work, CSCW ’06, pages 195–198, New
York, USA, 2006. ACM.

[21] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho,
and A. Zagalsky. The (r)evolution of social media in
software engineering. In Proc. of the 36th Intl. Conf.
on Software Engineering, Future of Software
Engineering, FOSE 2014, pages 100–116, New York,
NY, USA, 2014. ACM.

[22] C. Treude, F. Figueira Filho, B. Cleary, and M.-A.
Storey. Programming in a socially networked world:
the evolution of the social programmer. The Future of
Collaborative Software Development, pages 1–3, 2012.

[23] C. Treude and M.-A. Storey. Work item tagging:
Communicating concerns in collaborative software
development. Software Engineering, IEEE
Transactions, 38(1):19–34, 2012.

[24] M. M. Wasko and S. Faraj. “It is what one does”: why
people participate and help others in electronic
communities of practice. The Journal of Strategic
Inform. Systems, 9(2-3):155 – 173, 2000.

[25] E. C. Wenger and W. M. Snyder. Communities of
practice: The organizational frontier. Harvard business
review, 78(1):139–146, 2000.

[26] A. Zagalsky, O. Barzilay, and A. Yehudai. Example
overflow: Using social media for code recommendation.
In Proceedings of the Third International Workshop on
Recommendation Systems for Software Engineering,
pages 38–42. IEEE Press, 2012.

