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The need for advanced automation and artificial intelligence (AI) in various fields, including text classification,
has dramatically increased in the last decade, leaving us critically dependent on their performance and
reliability. Yet, as we increasingly rely more on AI applications, their algorithms are becoming more nuanced,
more complex, and less understandable precisely at a time we need to understand them better and trust them
to perform as expected. Text classification in the medical and cybersecurity domains is a good example of a
task where we may wish to keep the human in the loop. Human experts lack the capacity to deal with the
high volume and velocity of data that needs to be classified, and ML techniques are often unexplainable and
lack the ability to capture the required context needed to make the right decision and take action. We propose
a new abstract configuration of Human-Machine Learning (HML) that focuses on reciprocal learning, where
the human and the AI are collaborating partners.

We employ design-science research (DSR) to learn and design an application of the HML configuration,
which incorporates software to support combining human and artificial intelligences. We define the HML
configuration by its conceptual components and their function. We then describe the development of a system
called Fusion that supports human-machine reciprocal learning. Using two case studies of text classification
from the cyber domain, we evaluate Fusion and the proposed HML approach, demonstrating benefits and
challenges. Our results show a clear ability of domain experts to improve theML classification performance over
time, while both human and machine, collaboratively, develop their conceptualization, i.e., their knowledge of
classification. We generalize our insights from the DSR process as actionable principles for researchers and
designers of ’human in the learning loop’ systems. We conclude the paper by discussing HML configurations
and the challenge of capturing and representing knowledge gained jointly by human and machine, an area we
feel has great potential.

CCS Concepts: • Information systems→ Data analytics; • Human-centered computing→ Human
computer interaction (HCI); • Computing methodologies→ Natural language processing.
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1 INTRODUCTION
The explosion of communication over the Internet and mobile channels brings with it vast amounts
of data generated as posts on social media, emails, chats, text and multimedia messages. These
behavioral big data provide opportunities for communication analysis with text classification
that were infeasible a decade ago, but also present challenges in processing the big data [57]. One
prominent area of research and application that is enabled and enhanced by communication analysis
is the support of decision making and sense-making, an area that necessitates advanced automation
and artificial intelligence (AI) to provide the processing capacity and speed of analysis required
to make practical, often near real-time, decisions. Indeed, new AI techniques have demonstrated
remarkable progress in the last decade [37]. Hence, large-scale automatic analysis of communication
has now become necessary and feasible for supporting decision making.

Although the performance of automatic AI-based analysis of behavioral data has progressed, it
is still unsatisfactory [36]. More specifically, automatic communication analysis methods based
on text classification that are geared to action, such as the detection of suspicious behaviors, have
not yielded sufficiently accurate results for operational purposes [2]. One possible approach for
improving the detection performance is to “keep the human in the loop” [31, 55] in order to boost
the artificial intelligence with human intelligence, going beyond the current practice of involving
the human primarily during the initial training of machine learning (ML) algorithms [58]. Easier
said than done, however. Indeed, in this paper we begin by analyzing the challenges of keeping
the human in the loop and follow by designing the corresponding solutions. Combining human
intelligence with artificial intelligence introduces challenges not only in allocating tasks between
human and machine but also in communicating the knowledge from one to the other. We build on
Suchman’s [63] idea of human-machine configurations to delineate the composition and bounds of
our analysis, and take a joint cognitive-system perspective, in which the human and the artificial
are cooperating partners aiming to learn rather than one being a tool for the other [71]. This
perspective leads to an allocation of tasks that requires mutual intelligibility [4, 62] and dialog
between the human and the artificial in order to perform and learn more effectively.
Our overarching goal is to create a general framework for combining human and artificial

intelligence in which both learn reciprocally. We borrow the notion of reciprocal learning from a
multidisciplinary theory of learning in (human) dyads [34]. The theory was inspired by Vygotsky’s
claim that the development of human intelligence is achieved by interactively learning from
others and co-producing an understanding of the world rather than by individually accumulating
separate pieces of knowledge [66]. In applying the theory of reciprocal learning to human-machine
dyads, we adopt the theory’s cognitive mechanisms of dealing with complex learning. For instance,
reciprocal learning includes cognitive mechanisms, such as switching between learners with
different perspectives and switching between different contexts, which reinforce mutual learning
and result in a multiplier effect of learning [34]. Unlike traditional ML with reinforcement, not only
does the human reinforce ML, but, additionally, the machine reinforces human learning.
In this paper, we describe how we developed design principles for supporting reciprocal-

learning configurations, and applied them to a prototype called Fusion. These configurations,
which we call Human-Machine Learning (HML) configurations, are conceptual systems consisting of
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humans and machines that interactively leverage their intelligences for learning to solve problems,
analyze, explain, and judge. Unlike the support of reinforced ML, HML configurations must be
designed to support the mutual learning of machine and human. Moreover, systems that rely on
reciprocal learning are distinct from systems that support other human-computer collaborations
in at least two ways. First, the long standing relative-performance criterion for allocating tasks
between the human and the machine [22] must be expanded to more complex and fuzzy criteria
that consider also the transfer of control and responsibility from human to machine [53]. Second,
the complexity of human-machine communication is higher when facing intelligence-intensive
tasks, such as gaining insights, mindful judgment, creativity, and contextualization, compared with
routine, structured, or programmed tasks. To deal with the challenges of higher complexity of both
task allocation and communication, we design the combination of human and artificial intelligence
at two levels: the functional level that determines who does what, i.e., the task allocation between
human and machine and the communication level that determines what and how is communicated
between them.

The task selected for our work is text classification applied to the cyber security domain, where in
a “sea of data”, practitioners and researchers are interested in detecting suspicious communication
that may indicate, for example, fraud, drug related transactions, or terror acts. Once detected,
the suspicious message triggers an action in real-time to further investigate and possibly prevent
the crime (the action is beyond the scope of our research). Our working assumption is that an
ongoing interaction between human intelligence (an expert analyst) and artificial intelligence (ML
classification models), should be designed not only to jointly classify texts accurately, but also to
learn to cope with the dynamic nature of human communication. We believe that task allocation
in text classification should not be determined only according to performance (accuracy of ML
classification), but must also consider the expert’s learning and mutual intelligibility between the
expert and ML models.

The prototype we developed, Fusion, supports and combines both contemporary ML text classifi-
cation methods and human (qualitative) text analysis methods to detect suspicious communication.
While we necessarily adapt extant ML methods and qualitative methods to fit the classification
problem, our contribution is in fusing the human and the machine learning. To ground our design
of Fusion, we used two case studies of identifying suspicious communication in Darknet forums.
The first case study aimed to identify illegal drug activities (drug usage, solicitation, selling, and
purchasing) within “Hidden Answers”, a general purpose Darknet Q&A site. The second case study
aimed to identify expert hackers on the cybercriminal Darknet forum “BitsHacking”. We use both
case studies and dedicated domain experts throughout our iterative design process of Fusion, to
improve the collaborative interaction between these domain experts and the software system, and
to evaluate our prototype.

Our design science research (DSR) produces two artifacts that are described, respectively, in the
paper’s two parts: a theory-based conceptual artifact [3] referred to as the HML configuration (in
sections 2 and 4), and a technical artifact called Fusion (in sections 5-6). The first artifact is the HML
configuration that offers a novel paradigm for continuous reciprocal human-machine learning.
The second artifact, a component of the HML configuration, exemplifies the design for supporting
reciprocal learning. Sections 3-6 describe the methodology and case studies for developing Fusion,
the functionality, architecture, human computer interaction of Fusion, and its evaluation with
domain experts. In the final sections, we discuss the validity of the HML configuration in practice,
the way HML can change the practice of combining human and artificial intelligences, and the
revealed challenges faced by the domain experts, which help plot directions for future research.
We conclude the paper by providing researchers and practitioners design principles for building
HML support systems.
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We thus offer two key contributions: (1) an HML configuration in which both human and
machine learn reciprocally, which we believe can impact the practice of combining human and
machine intelligences, and (2) lessons learned from the design experience and its resulting prototype
to support reciprocal learning, which are presented in the form of synthesized design principles.

2 BACKGROUND
To better understand systems that combine human and artificial intelligence for text classification,
we begin by reviewing AI-based text classification and its challenges, especially the challenge of
leveraging context. Classifying a text message relies on determining the meaning of the content in
light of its context and accordingly deciding on the appropriate classification. Humans and machines
use different methods for determining context. Therefore, HML configurations must allocate the
specific methods for human or machine to implement, and must facilitate the communication
process between them. In this section, we review these methods at two levels: (1) at the functional
level tasks are allocated between human and machine, and (2) at the communication level reciprocal
feedback enables coordination and learning between human and machine. Section 4 later builds on
these aspects to propose a human-machine framework that is the basis for designing Fusion (as
described in Sections 5 and 7.5).

2.1 AI-based Text Classification of Messages in Context
In recent years, the need for and use of AI methods to accurately classify text has grown significantly.
Despite the advances made in language models for text classification [37] and the progress in
machine learning methods to leverage context for improving classification [41], the process of ML-
based text classification has remained relatively stable. Its main steps include: data preprocessing,
feature engineering and selection, model selection and fitting, and model evaluation [37]. We depict
this process in Figure 1. Kowsari et al. [37] have recently outlined a variety of techniques that
help accomplish each of these steps, e.g., preprocessing with term based tokenization, feature
engineering with bag-of-words or word embedding techniques, building a model with ML or
deep learning, and model evaluation based on accuracy or other criteria. Each technique has its
advantages and disadvantages, therefore choosing between them depends on the goal and the
characteristics of the corpus of interest.

Fig. 1. The main steps of AI-based text classification (adapted from Kowsari et al. [37]).

What is often overlooked in this process is the context. Context is what gives meaning to data,
i.e., textual data we wish to be classified. Priss [47] formally defines context as the set of objects and
attributes together with their relation to each other. In text classification, context is used regularly
for expanding the meaning of words (or structures of words). Mathematically, context can be built
from the corpus being classified or from an external (enhancement) corpus, a technique called word
embedding [42].

Word embedding techniques are considered context-aware, in the sense that terms are modeled
as an integral part of their linguistic surrounding [18, 36, 47]. Though addressing the context in
the local sense is important, it is sometimes necessary to understand the broader context of a
text, which manifests a hidden “internal conceptualization in the human mind” called a “meaning
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space” [36]. In contrast to the meaning space, which is free of noise and uncertainty, the linguistic
space of the textual corpus (on which embedding techniques operate) is noisy and incomplete. The
meaning space is often needed to interpret the message correctly. One challenge to ML in a noisy
space is to generate features that represent the meaning space. Another challenge is the ability to
learn from rare cases and imbalanced data [13].

The challenges of automated methods in modeling a broader context are even more pronounced
when the data have some behavioral aspects, in the sense that they contain elements of intention,
deception, emotion, reciprocation, herding, or other forms of human behavior [56], as in the case of
online discourse [1, 2, 47, 57, 73]. This is particularly true for Darknet communication, where people
who use it usually have something to hide or prefer to communicate anonymously [70], requiring
common data-science tools to be tailored to mining and analyzing messages in the Darknet [14].

Recognizing these challenges, recent attempts began examining ways to automatically incorpo-
rate layers of context to language models. Common examples are the use of internal knowledge base
with semantic NLP algorithms (e.g., Gardner et al. [24]), and the use of an external knowledge base
(e.g., Wang et al. [67]). Alongside these attempts, in the general AI research community [31, 58],
there is growing agreement that not all decision-related tasks can be delegated to AI. We believe
that this applies to the text classification field as well, and that different configurations of human
and artificial intelligence are therefore needed. This is particularly true when the text classifica-
tion task occurs in dynamic environments, in which the context changes frequently, like in the
case of online discourse. Human communication changes as its context changes and therefore
classification systems must learn and adapt continuously. Leveraging context may be one of the
advantages humans bring to automatic text classification, however, when applying context to HML
configurations it will be necessary to consider how context is used differentially by humans and
machines.

2.2 Human Text Classification
The human approach to text analysis differs from the AI-based classification described above,
particularly in the way humans use context when interpreting messages. In an HML configuration,
and unlike extant AI research on human augmented classification, humans are not only seen as a
means for improving the machine’s learning, but they themselves aim to learn. Learning in practice
has been likened to a spiral of knowledge creation that pauses to take action and resumes to upgrade
itself continuously [45, 69]. The knowledge creation spiral grows to include more dialog, more
information, more interpretations and perspectives, and more confidence in putting the knowledge
to action. People derive concepts and relationships from holistic observations, imagination, and
rare nuances, in a process called sense-making. The process of sense-making involves incremental
learning and testing old beliefs and interpretations in light of new data, new perspectives, and new
contexts. Sense-making results in some abstract view of the concrete data, i.e., a new “presumptive
understanding through progressive approximations” [69, p.412]. Moreover, the process iterates, often
in a trial-and-error manner, between a highly contextualized interpretation of a message to a
more abstract, and necessarily decontextualized, view of the message [50, 61, 74]. The result of
sense-making, which we refer to as ‘conceptualization’, may take the form of a list of concepts
(themes, constructs, abstractions) and possibly the relationships between the concepts, as well as,
classification criteria (rules). The conceptualization is the basis for deciding on classifications of
objects, which either observed directly (e.g., an image of a face) or understood from words in a
text [27]. Humans exhibit a distinct capacity for leveraging context when making sense of human
communication [19]. We employ this capacity in our proposed HML configuration (described in
Section 4), e.g., when the domain expert interprets the machine’s false-classifications or observes
unexpected behavior.
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Understanding the broader context enables a more effective processing of the data [36]. Addition-
ally, some consider context as going beyond the text, explicitly or implicitly; context reflected by the
entire corpus can be used to form a perspective from which the analyst builds interpretations. E.g.,
analysts who come from different professional backgrounds or having different native-languages
may hold different perspectives that lead to different interpretations and conflicting classifica-
tions [19]. Thus, broader contexts give rise to the opportunity to entertain more perspectives that
enrich the processes of sense-making and improve learning [69], a process referred to as perspective
taking [9], which is another central mechanism of reciprocal learning [34].
Humans use context naturally, as context is central to human perception, categorization, rea-

soning, and communication [26]. Domain experts, especially, are capable of seeing the big picture
and using it to focus their judgment of the more specific messages, their distinctions and com-
monalities [72], offering more opportunities for humans to complement computers. Nevertheless,
combining human and artificial intelligences for decision making requires attention and careful
application [5, 68]. In some cases, human judgment has been found to add accuracy to algorithmic
techniques, such as forecasting, but not in others. Therefore, human experts should focus only on
cases where contextual information supports more accurate interpretations. The contingent effect
of context on performance has been documented in several areas. Bernardy et al. [7] found that
context improves acceptability ratings for ill-formed sentences, not for well-formed. They also
found that context helps unsupervised systems to model acceptability. Katz and Te’eni [35] found
that adding context to messages was effective only when their complexity was high. It follows that
allocating to the human the task of leveraging context for better classification should be managed
for contingencies.

Fig. 2. Activities in the ‘spiral-like’ human sense-making process for text classification.

Figure 2 depicts a set of unordered activities associated with sense making. The apparent contrast
between the AI-based text classification (shown in Fig. 1) and human sense-making process raises
the question of compatibility, i.e., the need for structuring the sense-making process to ensure an
effective and consistent output that can be fed into machine classificationmodels. Several techniques
that allow this are used in qualitative research methods for analyzing text. Two such techniques
that can be used sequentially are: (1) qualitative content analysis which combines concept-driven
and data-driven categorization to guide classification [52]. The resulting categories form part of
the expert’s conceptualization. And, (2) structural analysis in which words and other symbols are
extracted to relate the conceptualization to the text [28]. Using these qualitative analysis techniques,
the domain experts employed for our case studies, generated a lexicon of categories and related
terms. These lexicons are similar in structure to the renown LIWC lexicon [64], yet differ in the
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fashion they are generated in the HML configuration—instead of using general categories (e.g.,
universal emotions), categories rooted in the specific corpus are generated by domain experts to
correspond to the specific ML classification task.

2.3 Human in The Learning Loop - The Functional Level
As noted in the introduction, the original designs of man-machine systems sought a division of
labor that capitalized on the relative advantages of human versus machine in performing a task,
e.g., human creativity vs. computerized calculations [22]. The criterion for allocating tasks to either
human or machine was their relative advantage in performing a particular function. The same line
of thought has been extended in several ways and applied in various domains over the years. For
example, Ip et al. [33] produced ‘Task Allocation Charts’ that first decompose a task into subtasks
and then allocate subtasks to the machine or (possibly multiple) operators. For example, given a
high volume or high velocity of data to be classified, it may be infeasible to allocate the task to a
human expert but the task can be broken into subtasks, e.g., the expert classifies only a selected
subset of the data manually. Indeed, common task allocations in text classification are: (1) for data
labeling, humans assign a class to texts in a training set, and then provide feedback to the machine
by re-labeling false ML based classifications [39]; and (2) for feature engineering, humans generate
or select the features with high prediction power, commonly in a trial-and-error fashion [72].
Classification accuracy can no longer be the sole criterion for task allocation. Indeed, several

recent studies have examined possible human-machine configurations that take into account
additional considerations, such as organizational implications [31], the degree of automation versus
augmentation [48], the contingencies of configurations based on parameters like task complexity
or ambiguity [58], and ethical issues such as discretion [15]. Keeping the human in the loop can
therefore be argued on grounds other than relative advantages in task performance. For instance,
the human remains in the loop to stay in control and take responsibility that comes with control,
or to supervise the machine performance to assure quality and learning.

One additional consideration for task allocation that is most relevant to HML configurations is
interpretability [43], which is the ability to interpret machine algorithms by the user. In fact, there
may be a tradeoff between interpretability and accuracy when choosing a classification method. A
loss in model interpretability may limit the effectiveness of human learning. For instance, when
learning is important, an interpretable model such as bag-of-words that trains the model using
words directly as features may be preferred over a word embedding model such asWord2Vec which
offers higher accuracy but loses interpretability when transforming words into vectors.

Our proposed HML configuration, described in Section 4, uses the criteria above to allocate tasks
of the machine’s activities associated with feature engineering and classification modeling (shown
in Fig. 1), and of the human activities associated with sense-making (shown in Fig. 2).

2.4 Human-Computer Interaction – The Communication Level
Our perspective of human-computer interaction is one of collaboration between partners [63],
according to the allocation of tasks between them. Effective communication between human
and computer to support coordinated performance and mutual learning is therefore critical for a
successful HML configuration. In particular, dialog is an essential part of reciprocal learning and
human sense making [69]. Human-machine communication is expected to be of high complexity
because the issues communicated will generally be complex (e.g., explaining the rationale for
classification), and the gap between human mental models and machine models may be substantial.
For these reasons, the loss of interpretability discussed above is a critical constraint on effective
communication in HML configurations. We discuss two aspects of effective communication, namely
feedback and context, both related to interpretability.
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Effective feedback from the machine to the human is essential for increasing human control over
communication and ensuring its quality [55], and it is particularly significant when communication
complexity is high [65]. The design of feedback depends on the role and context of the communi-
cation, and on the source of communication complexity too. Indeed, in HML configurations, the
bi-directional communication between human and machine enabled by the feedback is essential
for sense making [6]. In other words, an analyst working with a computer trying to make sense
of texts will not be effective without appropriate feedback during the sense-making process. If
the source of complexity is the gap between the classification model used by the machine and
the user’s mental model, feedback to increase understanding must be designed to consider that
gap—i.e., interpret the machine’s output in terms of the user’s meaning space and its terminology.

Feedback in HML configurations can further be articulated in terms of context, namely, Outcome
feedback versus Explanatory feedback that includes contextual information. In HML configurations,
the communication between human and machine, operationalized with the bi-directional feedback,
is difficult because of the communication gap between them. This gap is caused by the different
classification models they hold and the different formalism they use. To ensure mutual understand-
ing and overcome communication gaps, communicators rely on context around the core message,
and the greater the gap between communicators (i.e., less common ground), the more layers of
context are needed [65]. Outcome feedback indicates whether a prediction was correct or not (in
the case of multiple predictions, it may indicate their overall accuracy). Explanatory feedback uses
“problem-space” context to explain why a prediction is correct or incorrect (in the case of multiple
predictions, it may explain low accuracy due to some bias in estimation). Explanatory feedback,
compared with the higher-level outcome feedback, includes more concrete and detailed context
around a core message (e.g., specific examples of true or false classifications). Research on learning
with multimedia has shown that combinations of outcome (corrective) feedback and explanatory
feedback ensure deeper learning [44]. More generally, computer support can combine multiple
layers of context and deliver it interactively so that only relevant feedback is given at the right
time in a manner that is easy to understand and use effectively [35].

3 DESIGN SCIENCE RESEARCH METHODOLOGY
Our research methodology builds on previous recommendations for design science research
(DSR) [30, 54], which is aimed at studying the design and development of new artifacts as a
means for gaining knowledge. Our DSR produces a conceptual artifact, namely the HML configura-
tion, and a technical artifact, namely the Fusion prototype. The HML configuration offers a novel
paradigm for continuous reciprocal human-machine learning. The second artifact, a component
of the HML configuration, is a prototype we developed. It exemplifies the design for supporting
reciprocal learning. The remaining sections of our paper are organized around the DSR stages
shown in Table 1, which although presented sequentially, iterate in learning loops as described
below.
The idea of a human-machine learning system, applied to a domain expert working with ML

text classification algorithms, began as part of a research proposal submitted in 2017 and continued
into the first few months of the project. We had assumed, correctly in retrospect, that the HML
configuration would require software to support the challenges of reciprocal learning. We therefore
developed the HML configuration and Fusion in parallel.
We formed an interdisciplinary team of nine researchers composed of: (I) the data science sub-

team responsible for developing ML algorithms; (II) the domain experts who developed the explicit
representation of their knowledge and participated in user studies; (III) a qualitative research-
methods expert; and (IV) the design sub-team who formalized the human-machine processes and
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Table 1. Our iterative research process outlined as four stages.

DSR Stage
Artifact

HML configuration Fusion Section

1. Formulate re-
search problem

Formulate HML with reciprocal learn-
ing

Specify design to support HML configu-
ration

Sec. 4

2.
(a) Build Develop the software Sec. 5
(b) Use Users (domain experts) use Fusion to

detect suspicious messages
(c) Evaluate Measure accuracy and conceptualiza-

tion
Test functionality and usability Sec. 6

3. Reiterate and re-
design reciprocal
learning

Augment HML configuration Adjust Fusion

4. Generalize Set boundaries on HML configuration Formulate design principles Sec. 7

oversaw Fusion’s development. We also collaborated with a cybersecurity software company that
specializes in data mining and analysis of communication in hidden social media (e.g., Darknet).

For research stage 1, the team reviewed several streams of research in AI-based text classification,
intelligence analysis in the domains of crime and terror, design of human-computer intelligent col-
laboration, and mixed-methods analysis of unstructured conversational data (Section 2 summarizes
this effort). We then spent several months of field work, team brainstorming, and experimentation
with various options to arrive at an initial HML configuration, which also served to specify the
initial functionality of Fusion.

Research stage 1 surfaced the challenge of interdisciplinary team work, particularly, the need for
procedures, tools, and terminology to enable effective dialog. We built a common-ground dictionary
representing multiple perspectives, formalized the workflows of each sub-team and the integration
of individual efforts, and conducted team tutorials to obtain the minimal working knowledge
required for collaboration. For example, in order to augment the features used for classification, the
domain expert needed to understand which features affect classification and how, in the different
types of ML models used.

Research stage 2 is a Build-Use-Evaluate sequence of steps constituting one iteration in developing
Fusion and gaining knowledge for the next iteration. We worked on two corpora of data taken
from two different forums on the Darknet, each corpus with its corresponding domain expert
(subsection 3 describes these forums). We began by applying the Build-Use-Evaluate sequence to
one corpus, and augmented the HML configuration and adjusted Fusion according to the lessons
learned. We performed a second iteration on the first corpus to improve the interaction between
human and machine. Only then, we added another corpus to the study and followed the same
Build-Use-Evaluate sequence on it. In essence, we worked on a cascade of corpora, learning and
interchanging between them as we proceeded, to develop our design knowledge and incorporate it
into Fusion.

The Build-Use-Evaluate process was as follows:

• The development of Fusion began with gathering requirements from all stakeholders: the
data scientists, the qualitative-methods expert, and the domain experts. We used Figure 3 as
a map of the interaction and flow between human and machine. We also defined the data
flow and interface between the domain expert and the system being developed (e.g., the
structure of lexicon file). Fusion was developed in an agile-manner, beginning from a small
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single-scenario prototype, and then iterating with short rapid iterations. Fusion is written in
R and uses the Shiny framework1 for R.

• The process of using Fusion consisted of multiple iterations between the domain expert and
Fusion. These iterations were geared towards increasing the classification accuracy, which
Fusion communicated to the domain expert along with additional explanatory feedback. The
domain expert had the ability to select from several types of ML classification models offered
by Fusion. During this process, the qualitative-methods expert guided the domain expert in
developing the knowledge representation, which was part of the input into Fusion. A data
scientist would only intervene to change and extend the ML models within Fusion, or to
explore other external corpora.

• The design sub-team conducted ongoing evaluations of the HML configuration and the use
of Fusion. Classification accuracy measures of different models were compared to a baseline
model (several indices were used, such AUC, precision, and recall). Additionally, the domain
expert assessed the quality of the conceptualization as it progressed through the iterations
(each domain expert for the corresponding corpus). Finally, the design sub-team conducted
user studies to evaluate the combined work, looking at how the human benefits from the
machine and vice versa, exploring the challenges involved and the necessary functionality,
and examining the usability of Fusion. We performed five design iterations across two case
studies. Section 6 details the evaluation of the two case studies.

Research stage 3 initiates a deeper learning loop in which the lessons learned in the first Build-
Use-Evaluate iterations inform not only the design of Fusion but also the HML configuration. In
particular, we adjusted the work of the domain expert and the selection of qualitative techniques
used. Moreover, additional types of feedback from the machine to the human were designed (the
need for some of them came up only later in the process). At this stage, we also designed more
functionality in Fusion, expanded the ML modules and external corpora, and improved usability.
In the final research stage 4, we generalized the design knowledge we gained about HML

configurations and Fusion. The lessons learned through the DSR iterations about the functional
level in Fusion are detailed in the Technical Artifact section (Section 5), and lessons about usability
and the communicational level are summarized for the user studies in the Evaluation section
(Section 6.1). In our discussion section, we synthesize four of these lessons learned as design
principles that apply to our human actors [29].

Case Studies
To ground our work and guide the design, we used two case studies of text classification applied
to the cyber security domain with the goal of detecting suspicious communication. These case
studies were chosen at the beginning of the project and were motivated by our industry partner2
specializing in Darknet communication analysis and threat detection. We used their API to collect
the data. The data we used involved several inherent challenges—including strong data imbalance
towards non-suspect messages, hard to distinguish language-use in both suspect and non-suspect
groups, the use of slang, and the unstructured nature of the data. Each case study had an assigned
dedicated domain expert throughout the iterative design process of Fusion (referred to as DE1 and
DE2 respectively). These domain experts also participated in periodic user study sessions as part of
our evaluation.

1https://shiny.rstudio.com/
2https://www.cybersixgill.com/
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Case 1: Identifying Illicit Drug Transaction Messages in a Darknet Forum. Hidden Answers3 is the
Darknet version of Q&A sites such as Stack Exchange, Quora, Yahoo Answers, and Reddit, where
users can post questions about effectively any topic (without censorship). This is a diverse forum
with very broad themes, that operates in English, Spanish, Portuguese, and Russian. Allegedly, users
can also ask crime related questions, such as “Where can I buy drugs?”, “Which site is legitimate or
not?”, and “Where to buy guns and fake ID’s on the Deep Web?” The interface is similar to Reddit’s
and Stack Exchange’s interfaces, centered around questions organized by tags, and offers a search
functionality. The classification goal in this case was to classify as ‘suspect’ messages that talk about
usage, solicitation, selling, and purchasing of illegal drugs. We collected a total of 5,337 messages
(containing questions, answers, and comments) for this case study from March 8th 2018 until April
25th 2018. At this point, the domain expert (DE1) built an initial conceptualization based on 513
messages: inspecting the messages, assigning categories to words and phrases, and generating a
categorization. To avoid over-fitting, only when this process was done, the rest of the data (4,824
messages) were classified to serve as ground truth during the iterative process within Fusion. After
removing messages that couldn’t be classified, we ended up with 5,285 messages. Table 2 shows
descriptive statistics of the collected data.

Case 2: Identifying Expert Hackers in a Cybercriminal Forum ‘BitsHacking’. BitsHacking is an English-
language cybercriminal Darknet forum operating since 2012. It is known as a one of the most
popular carding sites, however, it also includes hacking and security, cracking, dump sharing,
tutorials on various topics, and hacking competitions. The functionality offered by both Hidden
Answers and BitsHacking is quite similar, however, whereas Hidden Answer’s UI is similar to
Reddit’s interface, BitsHacking is more of a traditional forum. The classification goal in this case
was to differentiate between expert hackers and amateur hackers. Specifically, to classify as ‘suspect’
messages indicating an expert hacker, i.e., a person with the knowledge and means for conducting
a harmful attack. We collected a total of 3,242 messages (containing questions, answers, and
comments) for this case study from December 28th 2019 until January 26th 2020.
Similarly to the previous case study, the domain expert (DE2) built an initial conceptualization

based on 543 messages: inspecting the messages, assigning categories to words and phrases, and
generating a categorization. However, due to data imbalance reflected by a low number of suspect
messages, the domain expert increased the initial conceptualization data set to 1,575 messages
(containing 59 suspect messages). To avoid over-fitting, the rest of the data (1,668 messages) were
classified by an external domain expert (DE3) specializing in cyber-crime, to serve as ground truth
during the iterative process within Fusion. During this process, both the domain expert assigned to
this case and the external expert discussed the classification process, and discussed which examples
they consider as suspect or not (as part of an inter-rater reliability protocol established ahead of
time).

Table 2. Descriptive statistics of the collected data. Data size indicates the total number of messages in the
corpus and the number of messages used to build the initial conceptualization. The class distribution indicates
how many messages were ‘true suspects’ out of the whole data set. Word count indicates the average number
of words per message.

Case Study Data Size Class Distribution Unique Users Word Count
Hidden Answers 5,285 messages (513 initial conceptualization) 196 suspect (3.85%) 1,166 57.43 avg.
Bits Hacking 3,242 messages (1,575 initial conceptualization) 78 suspect (2.46%) 344 198.59 avg.

3Accessible through Onion or i2p link (e.g., hiddenanswers.i2p).
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Domain Expert Descriptions: DE1 is a researcher specializing in qualitative data analysis and mixed
methods research, with more than five years of experience in social discourse analysis and cyber
ethnography. DE2 is a cybersecurity and web intelligence expert, specializing in identifying cyber
terrorism and the use of Dark web and social media by non state actors. He is consulted by industry
B2B cyber intelligence firms and previously served as an expert consultant on online violent
extremism and radicalization for the Organization for Security and Co-operation in Europe (OSCE).
The external domain expert (DE3), who assisted in case study 2, is a senior law enforcement officer
and cyber intelligence analyst who specializes in analysis and monitoring of the Dark web.

4 THE HML CONFIGURATION
We propose a general HML configuration that is demonstrated through text classification aimed at
suspect communication detection. The HML configuration is novel in integrating ML classification
with human text analysis in such way that allows reciprocal learning. We first formulate it and
later protoype and evaluate it in sections 3-6. The premise of our work is that a configuration
of human and artificial intelligence will lead to better classification than AI alone. The goal of
HML configuration that we study in this project is a combination of high classification accuracy
and effective learning. In effect, learning is by doing, i.e., the classifier extends their classification
knowledge in the act of attempting to classify new materials accurately. We characterize the
configuration using four components: processes, task allocation and control, data, and classification
knowledge. We further assume that the proposed configuration incorporates software to support
the collaboration between human and artificial intelligences.

4.1 HML configuration processes
Figure 3 depicts an abstract view of the HML configuration processes that rely on the data and
conceptualization to enable classification tasks. The processes are shown as a sequence of five
interdependent steps. The steps are performed by one of the actors (a human domain expert) and
a machine operating with a set of ML classification models. These ML models are designed and
redesigned by a data scientist. The implementational aspects of the processes, the allocation and
control of classification tasks, data models, and conceptualization, are further detailed in Section 5.

Fig. 3. A process diagram of the proposed HML configuration (adapted for suspect communication detection).

The left-hand side of Fig. 3 is an initialization phase and the right-hand side is the continuous
learning-feedback loop. The initialization phase (steps 1-3) includes processes needed to set up the
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HML configuration. The learning-feedback loop (steps 4 and 5) is ongoing, but pauses at some
satisficing point to enable automatic suspect detection, and reactivates periodically to control quality
and improve if need be. Initialization begins with setting up the corpus of textual communication,
cleaning, and organizing the data, as input for human and machine processing. In our case, it
involved mining data from the Darknet. In step 2, domain experts label the texts as either suspect
or not. This process is necessary for most ML algorithms. In step 3, a set of ML models is created.
Specifically, we considered two types of algorithms: supervised models, that use the labeling from
step 2, and sentiment-scoring based models which we refer to as unsupervised [38, 46], that do
not require labeling. Both types of algorithms are designed to be able to account for context in the
learning loop.
The reciprocal-learning feedback loop is the centerpiece of the HML configuration. It helps to

imagine two parallel learning processes occurring simultaneously: the machine learning and the
human learning. Both rely on the same data but interpret and use context in different ways to reach
a shared conceptualization of the corpus. In step 4, the domain expert creates a conceptual view of
the human classification process, including a statement of criteria by which to classify (e.g., suspect
vs. non-suspect). Conceptualization, as a process, entails making sense of the individual messages
in the context of other messages and the corpus as a whole (as depicted in Fig. 2). In the process
of sense-making, categories of content are formed and provide a stable structure to capture the
constant stream of new messages yet sufficiently flexible to be adapted to new circumstances. Sense
making entails not only integrating more information in context, but also examining alternative
perspectives, which includes alternative classification models. The resulting conceptualization can
therefore be seen, from the human perspective, as a temporary and presumptive view that can lead
to action, and although organized, is sufficiently adaptable to enable learning.

In Step 5, the selected ML model is trained on the corpus, with possibly additional inputs (lexicon,
external corpus). If necessary (e.g., unforeseen changes in the conceptualization), the algorithm is
re-designed by the data scientist. The ML models are evaluated for their predictive accuracy, and
when accuracy is satisfactory, the HML configuration will move to an automatic mode of detection
with the appropriate classification model and given conceptualization. Generally, we envision an
initial stage of intensive sessions in which a domain expert and the machine learn together how to
classify, and then, once the system begins classifying new data automatically, more HML sessions
will be initiated periodically to ensure continuous learning and assure classification quality.

The ML models generate feedback, both outcome and explanatory feedback, from which the
domain expert can learn and improve the conceptualization. The feedback should therefore describe
not only the classification accuracy (outcome feedback) but also the context that may explain or
suggest why specific messages were (machine) classified falsely or truly (explanatory feedback).
Armed with this information, the domain expert re-enters step 4 to revise the conceptualization. The
revised conceptualization becomes input to ML models in step 5, to implement the new knowledge
gained, and to retrain/redesign the ML models accordingly. In other words, the input from step 4
to step 5 can also be seen as feedback from the human to the machine. This loop demonstrates,
for our case, how in the HML configuration the quality of classification depends on the reciprocal
learning between human and machine. It can be seen as reinforcement of both machine learning
and human learning, recognizing that machines and humans learn differently.

4.2 Task Allocation and control
Steps 4 (Human process) and 5 (Machine process) enable the required classification tasks as shown
in Figures 1 and 2. In the proposed configuration, not only do the human and the machine perform
the tasks allocated to them according to their relative advantages in attaining classification accuracy,
but they also learn from each other to perform better in subsequent assignments so that high
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accuracy should not compromise learning. Furthermore, the human-machine collaboration requires
additional control tasks to ensure coordination and reciprocal learning. Table 3 allocates the
classification tasks between human and artificial, and, for clarity, distinguishes the control tasks
allocated to the human in a separate column. We also included tasks needed for the initialization
(Steps 1 - 3). The tasks allocated to the human can be performed by domain experts or data
scientists. In some cases, humans perform the task of labeling that serves as an input to ML
supervised algorithms, and as ground truth for generating feedback, but we concentrated here on
the generic tasks only.

Table 3. Initial task allocation in the proposed HML configuration.

Classification Tasks Allocated to
Machine

Classification Tasks Allocated to
Human

Control Tasks Allocated to Hu-
man

Organize corpus for efficient feature
extraction

Build conceptualization Control the initiation and flow of op-
erations

Extend features with external cor-
pora

Sense making, contextualization, per-
spective taking

Control when to pause (and resume)
learning and classify automatically

Extract features Qualitative content analysis to pro-
duce concepts

Labeling for ML training and valida-
tion

Operate classification models Qualitative structural analysis to pro-
duce lexicon

Select and design ML classification
models [Data Scientist]

Generate feedback to support human
learning

Analyze false classifications and rare
cases

4.3 Data
The data (not shown in Fig. 3) include the content and context of messages organized as a corpus
of human communications (e.g., text messages and posts) and external corpora that expand the
context (e.g., Wikipedia).

4.4 Classification Knowledge
The third component is the conceptualization, which is central to the HML configuration and
represents the classification knowledge learned by the human and machine. The conceptualization
is, at an abstract level, shared by human and machine but, at a concrete level, represented in
different forms with different formalisms. Furthermore, the choice of knowledge representations,
such as decision trees or lexicons, may differ between human experts and machine classifications.
When the domain expert uses qualitative content analysis, the emergent categories form part of the
conceptualization. They can be represented to fit the particular ML classification models, e.g., as a
hierarchy of categories, and separately, represented to fit the human, e.g., as a network of people or
objects, an algorithm, or a decision tree. Ideally, while not always feasible, machine representations
should fit human representations. In what follows, we limit the examples and implementation to a
lexicon based representation of the conceptualization. We use (human) structural analysis to relate
the conceptualization to the lexicon, which is then input to the ML classification models. We revisit
conceptualization representation in the discussion.
The conceptualization serves the machine in two ways. First, it organizes the context for word

embedding (metaphorically, the conceptualization “draws the machine’s attention” to where it
should seek related words). Second, the conceptualization defines new features (or relationships)
that the ML model should consider.
To sum up, the HML configuration shown in Figure 3 is a combination of human intelligence

and artificial intelligence in which each performs and learns classification tasks and, moreover,
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learns from each other. The HML configuration is characterized by its processes, its specific task
allocation, the data sets it processes, and the evolving conceptualization by which it classifies.
Fusion is designed to cope with the volume and complexity of operating the HML configuration.
The next three sections describe how we developed Fusion and used it to test the power of the
HML configuration.

5 TECHNICAL ARTIFACT: FUSION
Fusion is a working prototype designed to support HML configured for classifying text. Other
text classification systems exist, however, unlike Fusion they do not put human learning as a
primary (business) goal, nor have an automatic feedback loop between the user and machine. These
alternative systems can be categorized by their core capabilities: (1) GUI-based model construction—a
user-centric approach in which the user outlines the data analysis process. Such tools essentially
follow the state-of-the-art ML process (examples: deepcognition.ai, orangedatamining.com, rapid-
miner.com, dataiku.com); (2) Data visualization (BI) capabilities (examples: bigml.com, dataiku.com);
and (3) Automatic data-driven ML—machine-centric approach with minimal user intervention,
aimed at lower-tech users (examples: bigml.com, datarobot.com);

Fusion was developed following an agile methodology as described in Section 3, beginning from
a small single-scenario prototype, then, iteratively, used, tested, and evaluated. We started with
Case Study 1 (detection of suspected illegal drug activity messages) and expanded to Case Study 2
(identifying expert hackers).

In this section, we focus only on the key functionality of Fusion and four lessons learned for
reciprocal learning. The first lesson is about the need to support the setup and manage the entire
learning process shown in the HML-configuration process diagram (Fig. 3) according to the initial
task allocation (Table 3). The other three lessons refer to the key components and mechanisms of
reciprocal learning. In Section 7, we synthesize these lessons into generalizable design principles.

5.1 Facilitating the Process and Managing Task Allocation
Fusion’s menu items seen on the left-side of the screenshots in Fig. 4 reflect the key functionality
dictated by the HML-configuration processes (Section 4.1). The HML-configuration setup operations
(steps 1-3) are enabled throughmenu item ’Data’ or performed offline and then imported into Fusion.
’Lexicon’ and ’Concepts’ menu items enable human operations of step 4, and ’Model Generation’
menu item facilitates the control task for selecting and designing ML classification for step 5. Lastly,
’Model-Assisted Analysis’ supports sense making, contextualization, and perspective taking based on
machine feedback for human learning. These processes are best demonstrated by the screenshots
from Case Study 1 (shown in Fig. 4). The screenshots exhibit the overall user interface and the
general flow of the interaction.
The users of Fusion are domain experts, who are unfamiliar with ML classification. They, as

users, require support and guidance throughout the interaction with the system. Fusion provides
a notification feature and a tabbed navigation menu, which is always visible, allowing users to
navigate between steps and orient themselves quickly within the process. The user is further guided
by Fusion when confirming all the previous steps were done successfully before moving to the next
step. For example, (1) informing the user if no lexicon was uploaded when trying to proceed and in
generating a lexicon-based model; and (2) checking and informing the user if the lexicon includes
invalid entries, such as assigning the same term to multiple classes, which may hinder the next
steps. Additional functionality to support and guide users included tip-tools to explain technical
terms.

We attempted to allocate all data management tasks to Fusion. In particular, iterative classification
requires the division of data into iteration-chunks and allocating the data to model training and
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validation. For instance, if the domain expert inputs 5,285 data observations, and indicates that 513
of these were used for conceptualization and initial lexicon creation, these 513 will be assigned as
the training subset. The validation and leave-out test sets will get 500 proportionally-randomly-
chosen data points each. The leave-out test set stays constant throughout the iterations to help
recognize situations of data over-fitting. The rest, 3,772 data points, will be temporarily put aside
as unassigned. At the second iteration, the training set will grow to 1,013 data points (the original
513 + the 500 taken from the previous validation set), while a new validation set will be created by

(a) Data input screen where the user configures
the data input.

(b) Model selection and generation screen, pro-
viding a high level view of the existing models.

(c) Lexicon version management screen providing
a ‘diff’ functionality between versions 1 and 2.

(d) The high level view allows easy comparison
between models.

(e) Drill-down analysis of concrete text messages.
On mouse hover, the users is shown the term
propensity and the context of the word.

(f) A bar-chart visualizing how the domain expert
assigned terms to classes vs. how the model as-
signed them, ordered by propensity.

Fig. 4. Screenshots of Fusion’s user interface (based on data from case study 1).
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taking another 500 proportionally-randomly-chosen data points. This process will repeat itself in
each iteration step, as long as there is enough data in the unassigned subset or if new data is added.
Fusion automates this necessary control process in a way that is transparent to the user.

5.2 The Need for Conceptualization That Serves Human and Machine Learning
Conceptualization (shown as a spiral in Fig. 3) serves as the knowledge repository needed in
reciprocal learning for storing the accumulative knowledge, and at the same time, structures
the learning. Fusion, at this stage of its development, represents the conceptualization of the
HML configuration primarily as a lexicon that includes the domain expert’s hierarchy of concepts
(categories) and its mapping to word strings in the corpus. In essence, a lexicon is the mapping we
use between the domain expert’s conceptualization and a machine readable (and testable) input.
Lexicon terms can be a word, a phrase of consecutive words, or patterns of words, such as “X AND
Y”. Figure 5 shows an example of a lexicon (from Case Study 1), and Figure 4c shows the screen for
managing lexicons, in which Fusion shows a history of changes (i.e., diff ), for example, the pattern
“careful AND sell” that had been part of the category ’Sell’ in Lexicon version 1, was deleted from
Lexicon version 2.

Fig. 5. An example of a lexicon from Case Study 1 (not shown are optional columns such as website names,
website links, etc.)

5.3 The Need for Multiple Perspectives in Reciprocal Learning
Offering multiple perspectives, even when marginal change is introduced in each loop, is a central
mechanism of reciprocal learning. When generating an ML model, Fusion gives the user a choice
in classification methods and guides the user in this process. On the model generation screen, the
user is shown model-selection buttons (see Fig. 6), each one allows to choose a characteristic of the
desired model.

Fig. 6. Model selection characteristics offered in Fusion.
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The possible ML model characteristics offered in Fusion are as follows:

Machine Learning Model Type: Supervised or Unsupervised.

• Supervised model types are machine-learning based models, that use a portion of the labeled
data for training (learning), and then based on that learning, these models apply it to generate
classifications on new data. The ML models offered in Fusion employ word2vec and lasso
regression via glmnet4 to generate the model.

• Unsupervised model types in Fusion refer to sentiment scoring method [46], implemented
as follows: classify a message by examining how many terms (words, phrases) from the
message are labeled ‘suspect’ vs. ‘non-suspect’, normalized by the size of the lexicon. These
unsupervised models don’t use or require labeled data for training.

Lexicon Selection: Lexicon, Smart-Lexicon, or Baseline.

• The baseline model type doesn’t rely on a lexicon file. It classifies text by considering all the
words from the text (excluding stop words), where each word is represented as an embedding
vector calculated based on the chosen enhancement corpus. In this option, the user has no
control over the “feature selection” in generating an ML model.

• Lexicon and Smart-lexicon options use a lexicon file for feature selection. In essence, they
“focus the machine’s attention” to important words and filter out the noise. As opposed to
a non-lexicon based type (baseline), using a lexicon gives the user control over the feature
selection process, more so in the Lexicon type vs. the Smart-lexicon type. The difference
between Lexicon and Smart-lexicon options, is in the preprocessing of the lexicon. The
Lexicon model types use the lexicon ‘as given’, while the Smart-lexicon models first enhance
the lexicon with semantically-similar words (based on their embeddings) and then generate
the model.

Enhancement Corpus: Wikipedia or Other.

• Fusion uses a built-in enhancement corpus based on a portion of the English version of
Wikipedia, it is small (at the size of 100MB), but surprisingly is quite comprehensive, and
works well in many cases. For specialized cases where specific terminology is used, for
instance, if the text comes from online forums prevalent with slang, it may be better for the
user to provide a custom enhancement corpus (e.g., built by collecting texts that use a similar
slang). In the two case studies described in this paper, we did not use a custom enhancement
corpus, but the option to do so exists within Fusion.

Together, these characteristic selections indicate the type of model to be generated. In total, there
are currently five possible model types, each with their own characteristics and unique approaches
for classifying text: (1) unsupervised-lexicon, (2) unsupervised-smart-lexicon, (3) supervised-lexicon,
(4) supervised-smart-lexicon, and (5) supervised-baseline. In selecting certain classification model
characteristics, the user controls the effect of human conceptualization on the machine’s
feature engineering, and the perspective it grants the user. For instance, an unsupervised-
lexicon model type relies completely on the domain expert’s conceptualization for deciding the
classification, therefore, it helps examine the current human conceptualization ‘as-is’, i.e., examine
whether it captures the text as intended or not. On the other hand, a supervised-smart-lexiconmodel
type uses machine learning to both expand the lexicon with semantically-similar new terms and to
decide how the lexicon terms affect the classification. This grants a way for providing the domain
expert with recommendations on ways to expand their conceptualization. By taking advantage of
alternative model types the user can learn different lessons to improve their own conceptualization.
4https://glmnet.stanford.edu/articles/glmnet.html
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5.4 The Importance of Explainability for Contextualization and Explanatory Feedback
In Section 2, we talked about the importance of interpretability, which is the ability to interpret
machine algorithms in an understandable way to humans, and the tradeoff between model inter-
pretability and accuracy. More recently, researchers began exploring explainability and explainable
AI (XAI) techniques [8, 11, 20, 51, 60]. For us, explainability support was critical in Fusion. We
explored existing methods and initially implemented it by using the Local Interpretable Model-
Agnostic Explanations (LIME5) software package [49]. However, as Fusion evolved, we faced a
challenge relating to using LIME—the software package was impractical for the large data sets we
used, consisting of 500 text messages at a time (using LIME for more than 10 messages would work
extremely slowly or would crash due to high memory-consumption, hindering interactivity).

For this reason, we developed our own explainability component, that in essence uses the gener-
ated model to predict term propensity (for N-grams and skip-grams), and then another component
that colors the words (unigrams), phrases (N-grams), and patterns (skip-grams), that the model
used for classification, based on term propensity (coloring in red for higher propensity towards
‘suspect’, and in blue for higher propensity towards ‘non-suspect’). This solved the aforementioned
issue we had, and allowed us to control and customize the feedback provided to the user. We
found that information overload was a concern—communicating too many details about how
propensity was calculated or the inner-workings of the model, confused the user. To reach the
right level of details, we began by only showing colored words (either in red or blue). Then, based
on observations from the user studies, we gradually added relative propensity scores per word,
which helped communicate how the model reached the final classification, and added context to
the coloring, showing which phrases or patterns (skip-grams) the colored word is part of. This is
an example of explanatory feedback.
More generally, explainability is essential for feedback from the machine to the human expert

in order to enable the understanding necessary for effective reciprocal learning, as described in
Section 2. Feedback is effective when it is given and understoodwithin context and can be used in the
context to improve the learning process and its outcomes over time. Fusion provides either outcome
or explanatory feedback depending on the user’s motivation and goal. Explanatory (“drill-down”)
feedback is characterized by detailed contextual information. Outcome (“birds eye”) feedback is in
the form of performance metrics (e.g., AUC, recall, precision, accuracy) and is used when managing
lexicons (shown in Fig. 4c) or when creating models (shown in Fig. 4b). This allows to quickly
evaluate and make decisions about the performance of the model and to compare with other
co-existing models (Fig. 4d).
The explanatory feedback is used in the sense-making process and allows to ‘drill-down’ on

specific cases and terms, given within context. One example of explanatory feedback provided by
Fusion is colorized terms within a text message based on how they affected the model’s classification.
Fusion does this within the data being analyzed (not in an isolated view of terms alone), which
gives the domain expert the opportunity to reflect on and analyze terms and categories while
preserving the context these terms were used in. Moreover, as part of the low level analysis and the
ongoing conceptualization process, Fusion also provides domain experts with an interactive visual
representation of their categorization, as a way to increase context and provide cognitive support.
For example, Figure 4e demonstrates three instances of context provided to the user. The marked
word ‘mdma’ is shown in its linguistic context, i.e., the words around it in all the messages it was
used to classify. Additionally, the user can see (by hovering over ‘mdma’) the term’s propensity to
classify the message and the other lexicon terms that affected this propensity score. Finally, the
interactive category-tree, shown on the right-hand side of Figure 4e, shows the term as part of the

5https://cran.r-project.org/web/packages/lime/index.html
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user’s mental model of their conceptualization of the meaning space, as opposed to the linguistic
space of the corpus.
This low level analysis is further enhanced by giving the user the ability to filter and focus on

specific groups of terms or messages (e.g., only messages that were false negative classifications),
helping to gain new insights that were otherwise hard to see within the high volume of raw data. We
also take advantage of the ‘linking and brushing’ interaction technique [10] commonly used in the
information visualization field, allowing users to select lexicon terms in the bar-chart visualization,
and have it filter the drill-down text analysis component, to only show text messages containing
those terms. For effective communication between the expert and the machine, the differences
between the user’s assignments of words in the lexicon and the machine’s use of the same words
in the classification model must be made explicit. This comparison is presented in Figure 4f. For
example, the term ‘miners-hacker’ (5th from the top in the figure) receives a positive propensity
towards ‘suspect’ from the supervised ML model, while its blue color indicates that the domain
expert assigned it as a non-suspect. Lastly, the provision of effective feedback is not enough, the
user needs to act on it and enact a positive change in classification performance. This meant that
when designing Fusion and the feedback it provides, we needed to also consider how to instill
the user with trust in the system. We approached this by communicating transparently about the
process and giving the user a sense of involvement in the process.
The features described above evolved as a result of functional-level lessons learned from the

iterative DSR process we followed. In the next section, we share lessons about usability and the
communicational-level as part of a formative evaluation.

6 EVALUATION
We evaluated the application of Fusion in two case studies with their respective domain experts. For
clarity, we distinguish here between two types of evaluations: Formative evaluation that provides
feedback on functionality and usability intended for Fusion’s developers (stage 2c in Table 1); and
Summative evaluation that assesses the accuracy of classification models, and assesses the quality
of the conceptualization. For each case, we conducted two rounds of user studies, five months apart.
Participants were instructed to use Fusion to classify text and improve their conceptualization. These
sessions, mainly by Zoom, lasted 2-5 hours with each domain expert. Audio and screen-capture
were recorded, and participants were asked to think-aloud. We then conducted a semi-structured
interview around the classification task and the benefits of and difficulties in using Fusion. The
interview scripts for both rounds are shown in Appendices B and C.

6.1 Formative evaluation of functionality and usability
The first round of user studies focused on usability difficulties and the second on the expert’s
actions in reciprocal learning, working with the lexicon, and processing the feedback generated by
the ML model’s output. For simplicity, we combine the lessons learned from both rounds.

Control, guidance, terminology: Overall, the user study participants were satisfied that Fusion
supports the entire workflow of a single iteration, from data input, lexicon input, and model
generation, to a detailed analysis of lexicon terms and misclassified messages. Both participants
encountered difficulties in using the various functionalities, indicating a need for improvements in
guidance, better error checking, and overall better feedback on their input and better explanations
on the computer output (e.g., notifying the user of words that were assigned to both classes in the
lexicon file, suspect and non-suspect). DE2 wanted a step-by-step guidance indicating how far you
are in the process and wanted to better understand the process flow (e.g., why lexicon input was
not part of data input). DE1 wanted to know which parts of the data input were considered by the
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ML models, and wanted better explanations on the performance metrics provided by the model. To
overcome some of these issues, DE1 made use of visual cues from Fusion, such as the color coding
of AUC values and the four-colored bar data visualization (shown in Fig. 4b).

Feedback from ML models: The most pressing set of observed difficulties were tied to the inadequate
explainability of the feedback, both high level feedback and the low-level, specific, feedback. DE1
found it useful to see concrete text messages analyzed at the word level (see Fig. 4e). Moreover,
DE1 was impressed that he can use “brushing” (i.e., selection and filtering) on the bar chart which
affected the low-level analysis as well. However, at the same time, both DE1 and DE2 needed
time to adjust to the color coding of words, red as being more indicative of ‘suspect’ and blue as
more indicative of ‘non-suspect’, specifically what each color represented and why it was colored
that way. At the time, we only colored the words, without providing any context to the coloring—
something we addressed by the second round of user studies. Interestingly, when asked to find
improvements to the classification of messages, DE1 focused mainly on words that were colored,
i.e., words that already appeared in the lexicon, while DE2 first explored the whole text message,
and then examined the colored words.
Another key challenge the domain experts faced was the dissonance between how they as-

signed a term in their lexicon and how the machine used it to classify. For example, DE1 used a
supervised lexicon-based model and saw that some terms such as "Marijuana seeds" were given
a high propensity score for ‘non-suspect’ by the model, while they marked this term as ‘suspect’
in their lexicon. This confused DE1, as they wanted to know how this “mistake” had happened.
DE2 also encountered this dissonance, and described it as a “nice to have feature”—explaining that
by looking at unexpected propensity scores, it may trigger them to examine how and why the
machine assigned these scores, either by examining all text messages that contained the specific
term, or by using the term-frequency aggregated table.
We learned from the domain expert feedback and addressed some of the issues between user

study rounds. We added components that provide the necessary context for low level analysis
and improved cognitive support. Two examples of this are: (1) adding an interactive category-tree
(shown on the right side of Fig. 4e), that is as close as possible to the mental model the domain
expert built his conceptualization around; and (2) by hovering on colored terms, Fusion shows
which lexicon-terms affected the propensity score of the selected term, thus helping domain experts
see the rationale behind it.

Working with the data and lexicon: Aside from the difficulties in processing the machine feedback,
participants also showed difficulty when working on subsequent iterations of conceptualization:
examining new data and adjusting the lexicon. For instance, for the domain experts it was difficult
to find (from the corpus) the context in which specific classifications were originally made, or the
context that led to assigning certain terms to specific sub-categories. Similarly, DE2 wanted an
easier way to see under which sub-category in the lexicon the currently selected term is, without
manually opening the interactive category tree (which can be large). DE2 also suggested additional
new features that could be helpful, e.g., “I’m interested to take all the messages we classified as
‘suspect’, and by using the sub-categories we have in the lexicon, to see cross-patterns between the
‘suspect’ messages”.

Additionally, we gained a better understanding of the low level iterative analysis step. We now
see that this step requires more time for rethinking and working on the conceptualization. The
domain expert needs time to reflect, re-examine, and think things over. Sometimes the domain
expert may need to go back and re-examine previous categories or terms in the lexicon, and remind
themselves of the reasoning behind it. This is a comprehensive process, that requires both, the
software support from Fusion, and (parts of) the original conceptualization process. We also saw
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that there is a need to provide the domain expert with additional context about why they labeled
certain words in a certain way. Lastly, we believe that there is a need to instill the user with trust
in the machine, as we observed from DE1’s statements in the user studies.
Overall, the interaction and workflow between the domain experts and AI seems to have been

successful. “I better understand now where Fusion can help me, to simplify things for me, to shine a
light to places I’m not sure I would have looked at. I think I know now better where I need to look, beyond
the confusion matrix values we see on screen. I understand better the importance of model-assisted
analysis. I see it as a tool that improves the lexicon, from the perspective of someone who builds the
lexicon” [DE2].

6.2 Evaluating Classification Accuracy
Table 4 shows the performance metrics of both case studies across different model types, organized
by iteration number. Note, typically a domain expert will not run all these model types within
a single iteration in Fusion, but rather choose a model based on utility. Between iterations, the
lexicon is revisited and improved by the domain expert and a new validation set is generated.
However, the data set used for calculating ‘leave-out AUC’ does not change between iterations. To
make the results shown in in Table 4 even more comparable, we set a lower bound of 0.4 on the
recall value, which allows readers to compare models and iterations more easily using the precision
value. In two instances, there was no feasible solution found for this lower-bounded recall value.
The domain expert, as a user of Fusion, can also set a lower boundary for recall, and then using
precision compare and consider the “cost” of reaching this recall value. All the supervised models
shown, including the baseline model, used 10-fold cross validation to fit the model and synthetic
minority oversampling technique (SMOTE) [13] to help overcome class imbalance. Moreover, while
Fusion’s code and algorithms evolved over time during the project, the values shown in Table 4
were generated on the same version of code for comparison reasons (thus, not identical to values
generated during user studies which were conducted at various points in time). From the results,
we can see that (1) there is a clear ability to improve between iterations, (2) there is no a priori
way to know which model will perform best, and (3) our approach revealed that the data is not
stationary in case study 2 (seen by the values of ‘unsupervised’), yet, the problem posed by this
phenomenon is mitigated when we use lexicon-based approaches.

6.3 Evaluating The Conceptualization
In order to evaluate the conceptualization, we need to isolate and examine the improvement in
lexicon performance over time. A lexicon is the mapping we use between the domain expert’s
conceptualization and a machine readable (and testable) input (an example is shown in Fig. 5).
Conceptualization evaluation can be achieved by examining the unsupervised-lexicon model’s
leave-out AUC values across different iterations. An unsupervised-lexicon model within Fusion is a
deterministic model that classifies text purely based on lexicon terms. The leave-out data set stays
constant between iterations. Thus, by combining both, we control for all the variables except the
lexicon. By looking at Table 4, we can see the leave-out AUC values from the unsupervised-lexicon
models are increasing across iterations: 0.767⇒0.767⇒0.896 in case study 1, and 0.755⇒0.785 in
case study 2.
To further investigate whether the conceptualization is improving over time, we approached

it from a qualitative perspective, and focused on it during user study sessions, especially during
the second round of user studies. While we directly asked participants "Do you feel that your
conceptualization is better or worse than two iterations ago? How? and Why?", participants also
shared their thoughts throughout the user studies. DE1 replied that “Yes, of course. As the sampling
increases (through iterations), a qualitative domain expert, enriches the knowledge accumulated from

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 443. Publication date: October 2021.



The Design of Reciprocal Learning Between Human and Artificial Intelligence 443:23

Table 4. Performance metrics across different model types and iterations. Highest values within an iteration
are highlighted in bold font. Two instances where no feasible solution was found (for lower-bounded recall
value) are marked with ‘nfs’. In one instance, the Lasso regression did not converge [23]. It is based on the
Newton algorithm, which computes the gradient descent of the loss function at each iteration. When the
loss function has no derivative (usually in cases of data-overfitting, where loss = 0), the algorithm cannot
converge.

Case Study Iteration Model AUC Leave-out
AUC

Precision Recall Balanced
Accuracy

Hidden Answers

1

Baseline 0.767 0.874 0.068 0.4 0.615
Unsupervised Lexicon 0.807 0.767 0.345 0.667 0.814
Unsupervised Smart Lexicon 0.795 0.779 0.333 0.4 0.688
Supervised Lexicon 0.754 0.793 0.571 0.533 0.76
Supervised Smart Lexicon 0.879 0.869 0.6 0.4 0.696

2

Baseline 0.806 0.833 0.19 0.421 0.675
Unsupervised Lexicon 0.754 0.767 0.25 0.526 0.732
Unsupervised Smart Lexicon 0.744 0.793 0.167 0.158𝑛𝑓 𝑠 0.563
Supervised Lexicon 0.764 0.812 0.308 0.421 0.692
Supervised Smart Lexicon 0.729 0.865 0.364 0.421 0.696

3

Baseline 0.824 0.795 0.4 0.421 0.698
Unsupervised Lexicon 0.901 0.896 0.5 0.737 0.854
Unsupervised Smart Lexicon 0.841 0.856 0.085 0.211𝑛𝑓 𝑠 0.561
Supervised Lexicon 0.857 0.862 0.5 0.421 0.702
Supervised Smart Lexicon 0.879 0.864 0.471 0.421 0.701

BitsHacking

1

Baseline 0.946 0.776 0.103 0.429 0.688
Unsupervised Lexicon 0.799 0.755 0.042 0.429 0.645
Unsupervised Smart Lexicon 0.82 0.932 0.065 0.429 0.671
Supervised Lexicon 0.901 0.858 0.047 0.429 0.652
Supervised Smart Lexicon 0.819 0.802 0.064 0.429 0.67

2

Baseline 0.478 0.727 0.008 0.5 0.473
Unsupervised Lexicon 0.633 0.785 0.011 0.5 0.541
Unsupervised Smart Lexicon 0.786 0.928 0.05 0.5 0.707
Supervised Lexicon 0.63 0.989 0.15 0.5 0.737
Supervised Smart Lexicon (Lasso regression did not converge on this data set)

the coded data. So, it is likely that both the lexicon will grow, as happened to me, and the likelihood of
developing ‘concepts’ for certain data will increase.” Similarly, DE2 agreed by saying “Of course the
lexicon has improved. The fact that I added words and phrases (to the lexicon). There were posts that
revealed new dimensions that weren’t there before. Which makes sense, forums are dynamic.” DE2
further elaborated on how and why they felt their conceptualization has improved, “ It also gave
me a lot of confidence by the way, I think the results of the lexicon were nice in all performance metrics
we examined. This proves the iterative method, the learning loop. The more iterations I do, more likely
I’ll enrich the lexicon more.”

7 DISCUSSION
In this section, we first discuss human-machine learning configurations and raise questions on the
role of humans versus machines in reciprocal learning. Next, we examine the challenge of capturing
and representing the conceptualization knowledge, an area we feel has great potential. We also
discuss methodological limitations that may affect the generalizability of our results. Finally, we
provide design principles aimed at researchers and practitioners. These principles, which emerged
from our theoretical framework as well as our experience in developing Fusion, provide guidelines
for designing computerized systems to support collaboration for intelligent tasks, such as text
classification, decision making and design.

7.1 Human-Machine Learning Configuration
We started out with a vision of human-machine collaboration that keeps the human in the learning
loop [59]. In the HML configuration, both the human and the machine, not only combine their
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intelligent advantages to perform better, but also learn from each other to improve future perfor-
mance. Thus, the loop with reciprocal learning in Figure 3 is the centerpiece of the configuration.
In reciprocal learning, the dialog between partners leads to shared meaning and sense making,
particularly through contextualization and perspective taking, and, at the same time, acts as a
self-reinforcing mechanism [34]. Interestingly, in our second case study, DE2 commented that
the interaction with the machine built confidence in his classification. Additionally, in the HML
configuration, the allocation of tasks is meant to capitalize on the relative advantages of human
versus machine in performing and learning classification tasks so that the reinforcing feedback
from machine to human complements human cognitive abilities (and vice versa).
Our evaluations of using Fusion in the two forums, Hidden Answers and BitsHacking, demon-

strate the effect of learning on classification accuracy and conceptualization quality. In both forums,
the general increase in classification accuracy of the supervised lexicon-based models shown in
Table 4 indicates that learning improved accuracy from one iteration to another. This can be seen by
contrasting the lexicon-based models (Leave-out AUC column) with the baseline ML-only approach
as commonly implemented [42]. Furthermore, the accuracy of the unsupervised-lexicon (a proxy for
conceptualization quality) also increased with iterations. In parallel, the domain experts reported
(in the user studies) their subjective assessment of improvement. Interestingly, the experts used
different sources of feedback from the machine to decide how to improve the lexicon. DE1 chose
to attend to feedback on words already in the lexicon, while DE2 first explored the whole text
message for possible words that he had neglected. Regardless of the particular learning style, both
experts received reinforcement from the machine that would be infeasible (or extremely difficult)
for them to generate. It may be beneficial in future to explore HML configurations that adapt to the
user’s learning style.

In past research, the idea of a configuration of human and machine to perform jointly, has been
advanced at a macro level that addresses organizing, control, responsibility, and work implica-
tions [63]. We on the other hand, take a moremicro view of how the configuration operates, i.e., the
allocation of tasks and the communication within the configuration—a necessary level for making
these configurations operational. We concentrated on learning and sense-making, but we believe
our conclusions also apply to other forms of intelligent collaboration, such as joint decision making
and design.

Several researchers [31, 58] have argued that the combination of human and artificial intelligence
requires a distinct analysis. For example, Marcellino et al. [39] recently included human judgment
to complement advanced automatic text classification to detect online interference on Twitter.
We agree with them and offer a new approach to developing such collaborations that include a
concurrent analysis at both the functional and the communication levels to achieve a productive
collaboration, as we demonstrated in this paper.
Inspired by other researchers looking into how human-centered approaches affect machine

learning [25, 59], we re-iterate the following two questions: (1) What role do humans play in HML
configurations? and (2) Do HML configurations change the way in which machine learning is being
done, if so, how? We believe that our work helps answer the first question and takes a first step
towards answering the second question. By defining and evaluating the allocation of tasks within
an HML configuration, we can better understand and define the role of human experts working
collaboratively with, and learning from, artificial intelligence.

Our vision for the HML configuration as a conceptual framing for any human-artificial collabo-
ration, in which both human and machine can learn from each other, goes beyond communication
analysis. We have provided examples of applying HML in text classification, however this approach
can be generalized to other cases and domains, such as the detection of bullying and intimidation
online, an analysis of political messaging or fake news, and the analysis of medical imaging. For
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instance, screening mammography is a well established mechanism used globally for early detection
of breast cancer, but due to the vast number of performed mammography studies and insufficient
number of trained radiologists, there is a lack of experts to handle the increasing workloads. AI
based screening systems can achieve higher accuracy in interpreting mammograms than trained
radiologists [40]. More importantly, an HML configuration would enable periodic learning sessions
in which radiologist and system update their diagnostic knowledge.

7.2 Forms of Conceptualization
Reciprocal learning both builds and draws from the classification knowledge represented by the
conceptualization. Conceptualization acts as the memory necessary for learning, not only to store
knowledge, but also to structure the acquisition of new knowledge. At an abstract level, it is shared
by human and machine, but at a concrete level, it is represented in different forms with different
formalisms. It can therefore be seen as memory that supports distributed cognition [9]. A major
design challenge is to provide the functionality of a generative memory for effective cognition
distributed between human and machine. Boland et al. [9] see conceptualization as a temporary
and presumptive view that can lead to action, and although organized, is sufficiently adaptable to
enable learning.
Currently in Fusion, the classification-knowledge is represented primarily as a hierarchy of

concepts (categories), derived from the process of qualitative content analysis and mapped to the
corpus words through a lexicon. This lexicon becomes an input to the ML classification models
that use it to classify new text messages (step 5 in the learning loop), and then feedback on it is
provided back to the human expert, who can further augment the lexicon (step 4). However, this
may not necessarily capture or map all of the human expert’s conceptualization knowledge—other
mappings could be possible or needed. In fact, we have began to experiment with another form of
mapping the human expert’s conceptualization, represented as a set of rules that capture the expert’s
classification criteria, e.g., when looking for expert hackers, a rule to disregard messages in the
forum that in some way disclose the sender’s identity. These rules do not fit into a category-based
lexicon, and therefore require alternative structures to feed into the ML models.

We encountered this when the domain expert from case study 2, described his decision process
and mental model, and represented part of his classification knowledge as a decision tree. Further
development is needed in order to represent the richer forms of knowledge and their mapping
(richer than a lexicon), to serve both as input to the ML models and as a working memory for the
human expert to incorporate the feedback from the machine. In sum, there is a design challenge in
providing the functionality for a generative memory, much like the multiple modes of information
processing available in human memory [26]. Side by side with the new functionality, we must
provide and support effective communication between human and machine so that new forms
of generative memory processed by the machine must be explainable to the human. We believe
that visualization of the conceptualization will also become a significant area of research for HML
configurations [60].

7.3 Research Contributions
Several human-AI configurations that keep the human in the loop beyond the stage of machine
training have been proposed to ensure the successful operation of intelligent systems [31, 55].
Our research takes one step further by analyzing how such configurations should be designed,
conceptually and operationally. Concentrating on keeping the human in the learning loop [59],
we first specified a theory-based conceptual artifact [3], the HML configuration, for continuous
reciprocal learning. This contribution enabled us to then develop a technical (information systems)
artifact. Fusion, which supports the human-machine communication and visualization necessary for
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reciprocal learning in practice, implements the specification of the HML configuration based on the
functional and communicational analyses that explain how the configuration can be adapted effec-
tively to specific situations. The HML configuration can be seen as an extension of Suchman’s [63]
idea of human-machine configurations and a new general solution to how humans and machines
can learn reciprocally, posing two measurable targets, machine learning and human learning. As a
result, two new streams of research are currently building on and utilizing our HML configuration
to guide human-machine collaborations, one for examining the phenomenon of online religious
influencers and another for identifying expert hackers within dedicated online hacker communities
on Darknet.
A second, more practical, contribution is the lessons learnt from building the technical artifact.

Based on these lessons, we formulated design principles that can be useful when designing systems
that support reciprocal learning in order to ease the human-machine communication and facilitate
an effective allocation of tasks. Together with the HML configuration, these design principles and
lessons learned form a roadmap for others engaged in designing information systems to support
reciprocal learning, outlining pitfalls and suggested strategies to overcome them.

7.4 Limitations and Future Work
Several methodological limitations may affect the generalizability of our results. As we worked
on text classification related to cybersecurity of data taken from the Darknet, our proposed HML
configuration may need to be adapted to other joint-task contexts, particularly contexts in which
human communication is open among known friends or colleagues. Furthermore, each domain
requires its expert classifiers, whomay differ one from another. Indeed, we relied, for each case study,
on specialized experts to provide their subjective judgment during the initial data classification
(labeling) and conceptualization phases. Researchers in augmented text classification have noted
the threats to validity in employing human judgment due to duplication of bias and low inter-rater
reliability when establishing ground truth [21]. We used recommended methods of qualitative
analysis [12, 16, 17] to overcome inconsistencies and biases in creating the conceptualization of
classification knowledge, and we added an external expert to increase reliability and minimize bias.
Nevertheless, we are seeking ways to follow up on a sample of the suspects to compare expert
predictions with cases that were subsequently identified in reality.
Our use of machine learning algorithms was not exhaustive, we explored the most suitable

approaches (bag-of-words, word2vec). We are currently exploring the transition to Google’s BERT,
and, similarly, plan to experiment with others in the future. Additionally, we are developing new
forms of conceptualization (beyond the lexicon and rule based). We believe explainability of the
conceptualization and machine learning algorithms is a promising future avenue for advancements.
Finally, we proposed a general HML configuration that we hope others will apply in other domains
in which human experts learn from machines and vice versa.

7.5 Design Principles for Supporting Human-Machine Reciprocal Learning
We generalize our insights from the design-research process as principles for designing systems
that support human-machine reciprocal learning. We chose four challenges that were tackled
in the development of Fusion, which we believe are useful lessons for the design of human-
machine learning systems generally. We decided to concentrate only on design challenges that
involved human actors because they are different from the more algorithmic designs for non-human
actors [59], and because we feel we have more insights to contribute. The design principles to
overcome the challenges are: (1) iterative reciprocal learning with a shared conceptualization,
(2) feedback showing changing perspectives, (3) feedback showing changing contexts, and (4)
explainability of feedback.
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Table 5. Proposed design principles for developing HML support systems.

Design principle Explanation Operationalization
1. System should
support iterative,
continuous, accu-
mulative learning
represented in
a conceptualiza-
tion accessible by
machine and by
human

HML configuration requires learning by machine and
human. Supporting human learning requires iterations
with limited new information at each stage, the learning
should be able to continue as long as the human is in
the learning loop. Similarly, machine learning should
be iterative and accumulative. The accumulated knowl-
edge should be represented in a memory, namely the
conceptualization, that is accessible to both human and
machine.

Functional
(a) Knowledge accumulates in a visible conceptualiza-
tion; (b) Incremental learning adds small chunks of infor-
mation per iteration; (c) Human-computer interaction
feedback directs and restricts action at each iteration; (d)
Accessible logs of progress across iterations; (e) Ability
to navigate across iterations.
Communication
(f) Conceptualization presented to fit the human expert’s
mental model

2. System should
support examin-
ing alternative
perspectives in
feedback

Taking and examining alternative perspectives is es-
sential for effective sense making. In the HML config-
uration, each ML model generates a perspective that
is communicated through the machine feedback to the
human with its unique added value. Perspective taking
encourages exploration of new contexts through a new
lens.

Functional
(a) Fusion allows the user to add new model types at
any point of the process and iteration, subject only to
ML rules for avoiding overfitting. This functionality en-
ables differential learning in supervised vs. unsupervised
models; (b) Presenting the differences between models
in terms of features used and accuracy achieved.
Communication
(c) Feedback on alternative models should fit the user’s
mental model.

3. System should
support exam-
ining changing
contexts with
bi-directional
feedback

In HML configurations, reciprocal learning between hu-
man and machine is supported with bi-directional feed-
back that shifts attention to alternative and changing
contexts. Explanatory feedback to the human ex-
pert guides the expert to parts of the conceptualiza-
tion that were more or less effective, directing the next
learning iteration. Additionally, the outcome feedback
assesses the individual’s own learning. Feedback to
the machine (qualitative reinforcement) is provided
via the expert’s revised conceptualization that (a) points
the machine to promising parts of context at which text
should be analyzed, suggesting, possibly, new features
or relationships that should be considered in ML classi-
fication, and (b) expands the linguistic context of words.

Functional
(a) Outcome (high level) feedback in the form of clas-
sification accuracy measures; (b) Explanatory (specific)
feedback at the ‘message level’; (c) Explanatory feedback
organized by alternative dimensions (e.g., false vs. true
classifications)
Communication
(d) Feedback to human indicates the mapping between
human and machine conceptualization; (e) Feedback to
human indicates how a change in human conceptualiza-
tion is modeled by the machine

4. System should
provide explain-
ability in feedback
from machine to
human.

Explainability ensures effective communication so
that the human expert understands the feedback and
the reasoning behind it. This principle singles out the
need to understand the machine in order to learn from
it.

Communication
(a) Coloring the words in a message that impact the
classification, showing their propensity towards the as-
signed classification as ‘suspect’ (red) or ‘non-suspect’
(blue).

As we wish to generalize our insights beyond our experience with Fusion, we define the overar-
ching design goal for all four principles as facilitating effective reciprocal learning. The common
context is the HML configuration. Detailed explanations of how these challenges surfaced and
of the design solutions in Fusion are provided in Sections 5.2-5.4. Fusion is best viewed here as
an exemplar showing the context and rationale of the more general principles. Each solution in
Fusion corresponds to a learning mechanism in our HML configuration but adapted according to
the requirements made by the experts, who wished to learn and perform better. Table 5 explains
each principle and its application to Fusion at the functional and communication levels. As noted
above, the functional level refers to what functionality should be provided by human or by machine,
and the communication level refers to how information should be presented to ensure effective
communication. We established the latter mainly from miscommunications we observed in the
user studies. As Fusion is still under development, additional functionality will be developed to
fully materialize the four design principles.

We see these design principles as a major contribution of our research. In a way, the table can be
read from right to left, starting with the concrete functionality supplied according to the domain
experts’ requirements, and then generalizing to abstract principles that capture the essence of
supporting learning, regardless of the specific task of text classification. As suggested, this is not a
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complete list of lessons learned. Other design principles will be added as we gain more experience
and expand the support for the range of tasks and corresponding task allocations, shown in Table 3,
to include for example, control transfer from human to machine.

We believe the four principles can be generalized to other systems that leverage the combination
of human intelligence and artificial intelligence by boosting reciprocal learning. A word of caution,
however. Computerized support should be designed to enhance learning at both the functional
level and the communication level, which is often downplayed.

8 CONCLUSIONS
In a world increasingly reliant on AI, we wish to advance a new configuration of human and
artificial intelligence, one that keeps the human in the loop for ongoing efforts requiring continuous
learning. In particular, the use of automatic text classification and other problems that demand
context-aware intelligence have led to an explosion of research and development of AI-based
classification. Although, human-in-the-loop classifications are a long-standing goal, little progress
has been made at the micro-level determining how such systems should be implemented and used.
Our HML configurational view of human-machine learning has the potential to introduce a game-
changing paradigm to the design and use of machine intelligence. Through a design-science research
process, we have demonstrated both the feasibility and usefulness of an HML configuration as an
information system artifact, which we implemented and evaluated with Fusion. With two distinct
case studies, we demonstrated our new approach to reciprocal learning, creating an ongoing loop
in which human experts and machine models incrementally increase each other’s understanding.
Both studies showed: improvements in classifier accuracy over standalone ML models; higher levels
of explainability and domain experts’ perceptions of a productive interaction with the machine;
and the ability to effectively improve conceptualization and understanding.
The four design principles that we have derived from this work will help developers to design,

implement, and improve systems that support reciprocal learning between human and artificial
intelligence. The improved effectiveness of ML systems, the acceptance of such systems by domain
experts and society alike, and our ability as humans to remain in the loop, are all essential in a
world swept by AI applications. Our vision of keeping the human in the learning loop may be seen
in contrast with a trend towards complete automation, notably in the promise of a Deep-learning
systems that aim at automatic ML (AutoML) [32]. We believe, however, that there is room for
complementary visions in the foreseeable future, one that automates the learning of new but
structured tasks, and the other that supports the learning of new unstructured tasks.
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A FUSION’S ARCHITECTURE
This section provides an overview of Fusion’s underlying architecture, as shown in Figure 7. This
allows to see how we modeled the different aspects and components of our prototype, and its
extensible and modular capability. For instance, the ML algorithm modules (shown on the top-
right side of Fig. 7) are all managed through a shared interface controlled by the server. This way,
additional ML model types can be easily added to the system. Similarly, the contextualization
mapping components (shown on the top-left side) which are responsible for mapping the domain
expert’s knowledge into a machine-compatible input are designed and built in a modular fashion.
Lexicon is one such mapping which we used in our work so far, however, other alternative mappings
are possible and we began exploring these options. It is important to note that some components
of Fusion are not fully developed yet, such as user management, however we are gradually adding
and extending them. Overall, we envision Fusion becoming a fully-fledged framework for HML
support systems in the future, and it is reflected in Fusion’s architecture design.

Fig. 7. An overview of Fusion’s underlying architecture. Components marked with a star (*) are still under
development and may not be fully functional yet.

B USER STUDY GUIDE SCRIPT - ROUND 1
B.1 Goal & Method
User tests can be run for many different reasons: (1) to validate a prototype; (2) to find issues with complex flows; (3) to
gather unbiased user opinions; and (4) to get the insights that help create a better overall user experience. In our case, we
have a computer-based software system that aims to guide and support the iterative process of machine-learning (ML) model
generation for the purpose of text classification. The system aims to support the user’s goals: The qualitative researcher aims
to improve and evolve the lexicon as much as possible. Moreover, the system serves as a bridge between the quantitative
and qualitative worlds, bridging the terminological and knowledge gaps.

For these reasons, we aim to test how effective and usable the system is in the use case of a qualitative user creating a
lexicon and generating ML models to evaluate and improve the lexicon, as part of an iterative process.

B.1.1 Method. We will conduct a qualitative user study session, in which we will record the session and interview the
participants. The interview will consist of semi-structured interview (with open ended questions). There will be tasks given
to the user, based on the expected scenarios designed for Fusion.
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B.1.2 What is being captured?

• Videos (screen capture) and audio of users completing tasks and thinking aloud
• Verbal answers to the qualitative semi-structured interview questions

B.1.3 Equipment.

• Laptop with Fusion already set up on it (R-Studio is needed at the moment)
• OBS software to record the screen capture and audio
• Microphone
• Input files (labeled data + lexicon), properly organized for the session
• Notebook for taking notes
• Print out of this guide

B.2 Pre-test instructions to participant(s)
• It is important to emphasize we are not testing you the participant, we are testing the system. Please don’t worry if
something seems confusing or doesn’t work as you expected – do let us know though.

• Please provide open honest feedback.
• Think-aloud: please verbally communicate your thought process and anything else that goes through your mind
when using the system. It is extremely helpful to us. We may remind you to do so as we go, as some people tend to
forget to think-aloud after a couple of minutes.

• There is no time limit, so don’t worry about it and no need to hurry up.
• During the test we are not allowed to interfere/comment/suggest things. We may ask specific questions, but we will
refrain from answering questions during the tasks (or touching the laptop/fusion app).

• There might be errors or system crashing mid-testing (e.g., lack of memory). Fusion is still a prototype and a work
in progress, plus we have a recording system in the background which is resource-heavy (CPU mainly). Please don’t
worry if these issues happen, we’ll reboot the Fusion system and continue the user study from there.

• We are recording the session: both the screen and the audio of the conversation. This is to help us better analyze
the user study results. We will also take some notes during the test, these are notes about the system, please don’t
worry about it.

• Risks to participants: NONE!
• Expected duration: about an hour.

B.3 Pre-TestQuestions
• You have done the process of creating a text-classificationmodel generationmanually so far (not through a supporting
software system). What challenges or specific pain points did you have in doing so?

B.4 Test
Note: Fusion is a prototype and is still a work in progress. For this reason, some things are currently hard coded. I’ve
already gone ahead and created a user and a project for you for the purpose of this user study session. The project is called
"Hidden Answers". You won’t need to select or change it during the session.

Task 1: Upload labeled data into system. A labeled data file is given to you, with 5,337 data rows and 17 columns, each data
row is labeled (as one of: SU, NS, OS, N/A) – this labeling is the ground truth for the Fusion system. The first 513 rows in
this file were used by you to generate a lexicon. [Moderator shows file in Excel]

Task: You need to upload the labeled data into the Fusion system.
Pre-task questions:

• How easy do you think it is going to be? (on a scale of 1 to 5 where 1 is very easy, and 5 is very difficult)

Post-task questions:

• How many rows are in the uploaded data inside Fusion? Why 5,285 and not 5,337?
• Was the data split into several smaller sets? Which sets?
• Fusion is a system that supports an iterative process. How many iterations can we do with this given data?
• Out of the 17 columns in the data, which columns are going to be used for the text classification?
• How easy was it for you to accomplish the task? (1 to 5, 1 very easy... 5 very difficult) Why?
• How confident are you with your task’s outcome? Why?

Success condition: successfully uploaded the data into the system 5,285 rows, and it has split that data into 4 sets: 513
training, 500 validation, 500 leave-out validation, 3,772 unassigned.
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Task 2: Run a baseline model. As our first model, lets run a supervised baseline model with the data we uploaded. This will
help you get a general idea of how a standard approach would perform. We’ll use it as a reference point later when we
begin using a lexicon.

Task: Run a baseline model and report on the performance metrics.
Pre-task questions:
• How easy do you think it is going to be? (on a scale of 1 to 5 where 1 is very easy, and 5 is very difficult)

Post-task questions:
• How well do you think the baseline model has performed? Why?
• How many SU were identified by the model? Out of how many SUs in total in this validation set?
• How many false negatives were there? (i.e., posts classified as NS by model but were SU in reality)
• What is the AUC score for the model?
• Let’s look at the "Model-Assisted Analysis" tab, the top part only – this tab shows classification examples from the
validation set; It shows the words the model has used for classifying each post. Blue words are words the model
believes indicate NS, and red are words for indicating SU). Can you briefly explain in your own words how the
baseline model works?

• How easy was it for you to accomplish the task? (1 to 5, 1 very easy... 5 very difficult) Why?
• How confident are you with your task’s outcome? Why?

Success condition: successfully run a baseline model, and examine performance metrics. Correctly identify true positive
classifications from the confusionmetrics. Have a general idea of how baseline model works, with emphasis on understanding
that it will examine all words from the data documents (i.e., all words from the posts and their titles).

Task 3: Upload lexicon. You previously generated a lexicon file on your own. It has 19 rows and 8 columns. These include:
words, phrases, patterns, and website links — each one of these has a label (SU/NS), a category (e.g., Manufacture, Buy,
Sell), and in some cases a sub-category. We provide this file to you now, and we’ll use it as a lexicon for the ML model
generation. [Moderator opens file in excel]

Task: You need to import this lexicon into the system.
Pre-task questions:
• How easy do you think it is going to be? (on a scale of 1 to 5 where 1 is very easy, and 5 is very difficult)

Post-task questions:
• Notice that the lexicon structure has changed slightly, it was "flattened" by Fusion to make it machine readable, but
all the same content was kept. How many rows does it have?

• Please run an "unsupervised-lexicon" model. This model type simply counts the number of lexicon-terms from
each post and calculates the resulting percentage as follows: the percentage of words labeled with SU divided by
percentage of words labeled as NS. Go back to the lexicon tab afterwards. On average, how well did the lexicon we
imported performed?

• How easy was it for you to accomplish the task? (1 to 5, 1 very easy... 5 very difficult) Why?
• How confident are you with your task’s outcome? Why?

Success condition: successfully import a lexicon into the system with 229 entries. Successfully run an unsupervised-
lexicon model and by using it, see the average metrics of the lexicon (average across all model runs with this specific lexicon
version).

Task 4: Run a supervised lexicon model. Now, lets run a supervised lexicon model with the data and lexicon we uploaded. As
opposed to a baseline model (which is also a supervised model), this way we have much more control over how the model
will classify the posts – only terms that appear in the lexicon will be examined by the model.

Task: Run a supervised lexicon model and compare it to the baseline model we run earlier.
Pre-task questions:
• How easy do you think it is going to be? (on a scale of 1 to 5 where 1 is very easy, and 5 is very difficult)

Post-task questions:
• How well did the supervised-lexicon model compare to the baseline model? Which one had a better Recall value?
• We ran three models so far. Did all of them use the same validation data set?
• Which of the three models do you believe is the one you’d choose to continue working with when continuing to
develop the lexicon further?

• If you wanted to run another iteration of a specific model, how would you go about doing in Fusion?
• Is there anything that is unclear to you about the model you generated or its performance metrics?
• How easy was it for you to accomplish the task? (1 to 5, 1 very easy... 5 very difficult) Why?
• How confident are you with your task’s outcome? Why?
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Success condition: successfully run a supervised-lexicon-wikipedia model, and examine performance metrics. Correctly
compare this model type to previous models (e.g., correctly comparing true classifications, etc). Have a general idea
of how a supervised models works, with emphasis on understanding that a lexicon is the control mechanism the
qualitative-researcher has over the ML system.

Task 5: Analyze results and come-up with improvements to lexicon. At this point, we would like to analyze the results of
the last model we ran – the supervised lexicon model (wikipedia based). We would like to better understand why the
performance was as it was, and why the machine learning model classified (or misclassified) as it did. For this purpose, we’ll
use the "Model-Assisted Analysis" tab. [Moderator please notice if user switches to the correct model id]

Task A (no guidance): By using this tab, come up with two improvements you can do to the lexicon.
Pre-task questions:
• How easy do you think it is going to be? (on a scale of 1 to 5 where 1 is very easy, and 5 is very difficult)

Task B (specific instructions):
(1) Drill down to specific examples: examine all the false negatives the model has generated (i.e., model classified as NS

while in reality they should have been SU). Extract terms that can be added to the lexicon in order to improve it.
(2) Look at the high level aggregated table and bar chart. Which terms were the best predictors in your opinion? Which

terms were best predictors of NS posts?
Post-task questions:
• Let’s select a group of words on the bar chart to limit the analysis. Select a group of five words of interest (e.g., blue
words that have high positive probability). What can you learn from this?

• Based on this in-depth analysis, how well do you think the model performed? Why?
• Do you believe you can improve the lexicon? How?
• What unexpected things did you find here?
• How easy was it for you to accomplish the task? (1 to 5, 1 very easy... 5 very difficult) Why?
• How confident are you with your task’s outcome? Why?

Success condition: successfully use the drill down view to examine examples from the validation set and identify terms
that can improve the lexicon (either by adding or removing them from lexicon). Successfully sort the aggregated table based
on TP, FN, etc... to get a better view on which words were best predictors per case.

B.5 Post-test OpenQuestions
(1) What do you think of this user study session?
(2) What is your overall experience with Fusion?
(3) What difficulties did you have during the whole process?
(4) What was easy for you?
(5) If you created a lexicon, how would you know it is good?
(6) Was it easy or difficult for you to create a machine learning model and gain insights from it? Why?
(7) Would you like to add something that you did not mention? (share insights)

C USER STUDY GUIDE SCRIPT - ROUND 2
C.1 Pre-test instructions to participant(s)

• It is important to emphasize we are not testing you the participant, we are testing the system. Please don’t worry if
something seems confusing or doesn’t work as you expected – do let us know though.

• Please provide open honest feedback.
• Think-aloud: please verbally communicate your thought process and anything else that goes through your mind
when using the system. It is extremely helpful to us. We may remind you to do so as we go, as some people tend to
forget to think-aloud after a couple of minutes.

• There is no time limit, so don’t worry about it and no need to hurry up.
• You’ll be operating Fusion remotely, from your own laptop.
• There might be errors or system crashing mid-testing (e.g., lack of memory). Fusion is still a prototype and a work

in progress, plus we have a recording system in the background which is resource-heavy (CPU mainly). Please don’t
worry if these issues happen, we’ll reboot the Fusion system and continue the user study from there.

• We are recording the session: both the screen and the audio of the conversation. This is to help us better analyze
the user study results. We will also take some notes during the test, these are notes about the system, please don’t
worry about it.

• Risks to participants: NONE!
• Expected duration: about two hours.
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Task 1: Run an Unsupervised-Lexicon model.
• Let’s focus on posts that the system didn’t capture (i.e., that it didn’t classify correctly). Open the "Model-assisted
Analysis" tab and look at the examples from the validation set—focus on the false-negatives.

• Examine the false-negative posts.
• Do you understand the feedback you are shown by Fusion?
• Why do you think the system misclassified them? Focus on specific posts and point out specific reasons you believe
cause the misclassification.

• Choose 2-3 posts and explain to us how does your categorization applies to them. Notice that we are also
showing you your existing categorization tree on the right side of the screen.

• What NEW insights did you gain by these actions?
• Considering that you are working with an unsupervised model, what changes can you make now to the lexicon

to improve it? Lets do (some of) them now live. Feel free to do these changes in Excel and upload a new version of
the lexicon.

Run another, parallel, Unsupervised-Lexicon model – this way we run the model on the exact same data. Let’s look again
at the false-negatives.

• Was there an improvement in the classification? Why?
• Do you feel your lexicon is improving? Why?
• Are there any posts that don’t have any colored words? Should your lexicon capture these as well?
• To better cover posts from this domain, how can you improve your conceptualization and lexicon?

Task 2: Now, let’s move to using a Supervised model. This time, the model will apply "his own judgment" in the classifications.
This gives you a great opportunity to consider new aspects and terms you haven’t included in your lexicon. It gives a
different perspective that allows you to better learn as part of the iteration process.

• Run a Supervised-Lexicon model (first iteration).
• Does it perform better (or worse) than the unsupervised ones?
• Does it capture better (or worse) the posts in this domain? (for instance, posts that were not colored before)
• What can you learn from this model’s results?
• Can you use this feedback to improve your lexicon? How? (give specific examples)

Make any improvements you identified and let’s run a second iteration for the supervised-lexicon model. This will apply
your improvements to a new validation data subset – we will examine this new data subset now.

• We now see new posts that you haven’t examined previously (i.e., you did not examine these during your concep-
tualization phase). Let’s continue focusing on false-negatives (if none, focus on false-positives).

• Can you walk us through on how you’d continue building your conceptualization by using these new posts?
• What new insights did you gain this time?
• Explainability: do you understand the difference in feedback when using supervised vs. unsupervised models? What
changes can you make now?

• Do you feel that your conceptualization is better or worse than two iterations ago? How? Why?
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