
Defining and Classifying Software Bots:
A Faceted Taxonomy

Carlene Lebeuf∗, Alexey Zagalsky†, Matthieu Foucault† and Margaret-Anne Storey†
∗Microsoft, USA

Email: calebeuf@microsoft.com
†The CHISEL Group, University of Victoria, Canada

Email: alexeyza@uvic.ca, mfoucault@uvic.ca, mstorey@uvic.ca

Abstract—While bots have been around for many decades,
recent technological advancements and the increasing adoption
of language-based communication platforms have led to a surge
of new software bots, which have become increasingly pervasive
in our everyday lives. Although many novel bots are being
designed and deployed, the terms used to describe them and
their properties are vast, diverse, and often inconsistent. Even
the concept of what is or is not a bot is unclear. This hinders
our ability to study, understand, design, and classify bots.

In this paper, we present a taxonomy of software bots, which
focuses on the observable properties and behaviours of software
bots, as well as the environments where bots are deployed and
designed. We see this taxonomy as a focal point for a discussion
in our community so that together we can deeply consider how
to evaluate and understand existing bots, as well as how we may
design more innovative and productive bots.

Index Terms—software bots, taxonomy, classification, software
engineering

I. INTRODUCTION

“The bot family tree is a confused and contradictory plant,
a warped and twisted structure, as unlike Darwin’s great Tree
of Life as a blackberry bush is unlike a weeping willow.” [1]

From the earliest days of computer programming, people

have dreamed about creating software programs that could

think and behave like humans [1]. Such programs would not

only automate tasks that humans perform, they would also

work with humans to solve intellectual problems that cannot

be entirely automated. The term “bot” was used to describe a

realization of this vision quite early on [1].

In just the past few decades, we have witnessed an uprising

of the next generation of software bot technologies, which are

becoming increasingly pervasive in our everyday lives. Recent

technological advancements and the adoption of language-

based messaging platforms (e.g., Microsoft Teams, Slack) have

led to a surge of new ubiquitous software bots [2]. Bots are

replacing not just simple tasks but also very complex software

applications. However, we worry that a poor understanding

of this shift could lead to unanticipated challenges and risks

experienced by both bot users and creators.

Although many novel bots have been designed and widely

deployed, the terminology used to describe them and their

properties is inconsistent. This is due to their development

(and adoption) across multiple technical disciplines (including

HCI, AI, SE, and systems) and diverse domains (e.g., health,

software engineering, commerce, and entertainment). Indeed

even definitions about what is or is not a bot vary considerably.

This is not surprising given the wide range of software

applications that are commonly referred to as “bots”. The

use of the term bot varies from describing simple scripts that

automate a task in the background, to complex applications

that interact with one or more humans and autonomously adapt

to activities that people and other systems do, and even all the

way to software applications that use AI and natural language

processing (NLP) to mimic human behaviour and intelligence.

We believe that, as a research and design community, we

need an agreed upon taxonomy so that we can together more

effectively compare, classify, evaluate, and design new bots.

In this paper, we provide a definition of software bots and

present a taxonomy developed through an extensive literature

review and consideration of a broad landscape of bots [3].

We used Usman et al.’s process for taxonomy generation [4],

part of which involved a card sorting activity to develop the

main facets (and subfacets) in the taxonomy [3]. We propose

a faceted taxonomy so that bots may be classified using

multiple perspectives.

Faceted taxonomies are commonly used in software engi-

neering and are particularly suitable for classifying complex

entities where “each facet is independent and can have its

own classes, which enable facet-based taxonomies to be easily

adapted so they can evolve smoothly over time” [4]. As bots

and their properties tend to evolve rapidly, any taxonomy about

them needs to be easy to expand and adapt. The taxonomy we

propose has three main facets that refer to:

• the properties of the environment that the bot was created

and operates in;

• the intrinsic properties of the bot itself; and

• the bot’s interactions within its environment.

We hope it will serve as a focal point for discussion so that

our community can share insights and knowledge about how

to evaluate and understand existing bots, as well as how we

may design innovative bots for the future while being aware

of the limitations and risks they may introduce. We invite the

community to reflect on the definition and taxonomy we put

forward as we expect other insights may help us improve and

refine both of these contributions.

1

2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE)

978-1-7281-2262-5/19/$31.00 ©2019 IEEE
DOI 10.1109/BotSE.2019.00008

II. AN OVERVIEW AND THE ORIGINS OF SOFTWARE BOTS

Early descriptions of bot-like helpers include Socrates’ dai-
monion in 399 BC [1] and James Clerk Maxwell’s hypothetical

demon in 1871 [5]. However, the first real digital helpers were

created for the Multics operating system by programmers at

MIT in 1963 [1]. They adopted the term daemon, which is still

used today, to describe small programs running unobtrusively

as background processes instead of being directly controlled

by users on Unix-like operating systems.

While the first appearance of the term robot is credited

to a 1921 science fiction play entitled Rossum’s Universal

Robots [6], where the author replaced the classical term

automata with robot, real robots only began to appear in the

early 1970s [7], [8]. The term bot originated as an abbreviation

of robot, however, unlike software bots, which are digital,

robots are mechanical. And while robots are used in the

physical world much in the same way software bots are used

in the digital world, they have tangible, mechanical bodies

that perform tasks by manipulating the physical world, often

helping automate repetitive tasks.

The Turing Test (1950) sparked the development of chat-
bots, computer programs designed to act humanly by talking

to users [9], [10]. Created in 1966 by MIT professor Joseph

Weizenbaum, Eliza was the first computer program to converse

with humans. Eliza attempted to cover her limited vocabulary

by imitating a psychotherapist: Eliza searched for keywords

in the user’s speech and responded with preprogrammed

questions, shifting the focus of the conversation back onto

the user.

Eliza inspired a variety of notable chatbots, including: Perry

(1972), the paranoid schizophrenic [11]; Alice (1995), the

natural language processing bot with lots of personality [12];

and SmarterChild (2000) [13]. While these earlier chatbots’ in-

teractions were purely text based, advances in natural language

processing allowed chatbots to begin using spoken language

or a combination of text and speech. The personal assistant

chatbot Julia (1994) was the first verbal chatbot [14]. A couple

of years later, Sylvie (1997) became the first “virtual human”

with an animated face and voice [15].

Related to these are software agents, which are often con-

fused with bots. The word agent originates from the Latin word

agere, meaning “to do” or “to act on someone’s behalf” [10],

[16]. The first software agents can be traced back to Hewitt’s

Actor Model [16]. However, agents were brought into the

public eye by the famous “Knowledge Navigator” video that

portrayed the interaction between a software agent and its

user [17]. Later, software agent research began to diversify and

a variety of agents emerged to support a broad range of tasks

across many domains. Software agents also began to take on

various names, based on either some significant property (e.g,.

collaborative, interface, mobile, internet, reactive, or smart) or

their purpose (e.g., personal assistants, guides).

The recent re-emergence of software bots and subsequent

increase in new bots being designed, deployed, and used has

been a result of technological advancements, the mainstream

adoption of both text messaging and voice-based platforms,

the transition to service-oriented architectures, and the abun-

dance of public APIs and datasets [3]. However, due to the

complicated and dispersed history of bots, bot design and

research communities are confronted with a vast, diverse, and

often inconsistent terminology, and lack a proper classification

scheme.

There are existing bot taxonomies and classification

schemes [16], [18]–[29], but we believe they are ineffective

or unsuitable for classifying many of the modern software

bots. Some classifications organize bots into subtypes (e.g.,

agents, chatbots) or based on their roles (e.g., informational

bots, transactional bots). Other taxonomies focus only on the

properties of specific subtypes of bots. In terms of granularity,

some taxonomies are too low level and describe a specific

property or behaviour of bots in extreme detail, while others

are too high level and combine many properties together into

a single dimension, often providing no description of the

property or behaviour at all. Moreover, the rapidly changing

bot landscape means that classification schemes become out

of date if they don’t consider recent technological advances

that are a central part of the bots we see today (e.g., NLP,

voice).

We believe that a taxonomy should not be a one-size-
fits-all solution. However, we strived to combat these issues

through the design decisions behind our taxonomy: (1) it was

designed as a multi-faceted taxonomy to allow for selective

use and graceful expansion as each facet is independent;

(2) it can be used to classify the observable properties and

behaviours of software bots; and it (3) provides a consistent

set of terminology (i.e., variant terms [30]) that map between

our controlled vocabulary and the terms used to describe

the same content in other related work. It is the product of

many software bot taxonomies being merged together, yet we

strongly believe that it should never be considered complete.

III. DEFINING SOFTWARE BOTS

Despite their increasing popularity, analyzing and under-

standing bots is challenging. Existing research of software bot

technologies spans across multiple areas and disciplines, and

has resulted in the lack of a generally accepted definition of

software bots. Over the years, researchers and practitioners

have tried to define bots in accordance with their specific

applications. For example, some define bots by their ability to

automate tasks [31]–[33] or behave autonomously [34], while

others define bots by their conversational capabilities [35], [36]

or human-like behaviors [37], [38].

While a multitude of definitions exist, some contradicting or

overlapping, there are several themes that are consistent across

many of the interpretations. We used these central themes to

develop our proposed definition of software bot-hood. We also

compared software bots to other related technologies to further

understand what makes a bot a “bot”. For brevity, we do not

include this comparison here and kindly refer the interested

reader to Lebeuf’s thesis [3].

2

We view software bots as a new interface paradigm; bots

connect users with software services. While bot users are often

humans, they are not required to be: users can be programs,

systems, or even other bots. A bot is the interface that provides
the services to the user, i.e., a bot is everything required to

present the service to the user. However, the bot and the service

can and should be decoupled from each other.

Fig. 1: The relationship between (a) software bots, (b) software

services, and (c) software bots with internal services.

Software services are “a mechanism to enable access to
one or more capabilities” [39]. Software bots utilize software

services for the raw value they provide; services provide

software functionality (or a set of software functionalities) in

a format that can be reused by multiple clients for a variety

of purposes. Modern services come in many forms, ranging

from the retrieval of information to the execution of a set

of operations. Often, a bot performs tasks that rely on these

services repetitively, saving the user time through automation.

Software services can be external to the bot, internal, or a

mixture of both types. Figure 1 illustrates this bot–service

relationship.

If software bots provide an alternative interface to services,

then what exactly does a software bot interface entail? A

software bot is the interface where the user and the bot’s

services meet. Furthermore, the software bot interface usually

leverages recent advances in interface paradigms and provides
additional value on top of its services (e.g., lowering the

barrier of access, consolidating multiple services, providing

automation).

Nowadays, users can interact with software bots via

the command line, graphical interfaces, touch interfaces,

spoken/written language, or a combination of interaction

paradigms. It should be noted, however, that these interfaces

are not required to be interfaces that humans use; the software

bot’s interface can be used by other bots or other types

of software systems. Another common way that software

bots provide additional value is through anthropomorphism—

making the user’s interactions with the software services

more enjoyable by making it more human. There are many

ways in which people anthropomorphize software bots: giving

them names, personalities, emotions, etc. We discuss more

of the additional value that bots provide as we introduce our

taxonomy in the next section.

IV. THE TAXONOMY

This taxonomy aims to update and organize the emergent

properties of software bots to provide a deeper understanding

of existing software bots as a whole. More specifically, it

presents a controlled vocabulary (i.e., variant terms [30])

for discussing the observable properties and behaviours of

software bots. This taxonomy also provides a range of possible

values for each category of properties or behaviours. It was

designed specifically as a faceted taxonomy to allow for the

subject matter (software bots) to be classified from multiple,

independent perspectives (called facets) that can be combined

to create a full classification of a software bot.

TAXONOMY OF SOFTWARE BOTS

Environment
Dimension

Intrinsic
Dimension

Interaction
Dimension

Knowledge

Reasoning

Adaptability

Goals

Delegation

Specialization

Anthropomorphism

Lifecycle

Type

Scope

Closure

Dynamism

Determinism

Permanence

Population

Access

Sense

Act

Communicate

Initiative

Robustness

Mobility

Fig. 2: A high-level view of the Software Bot Taxonomy’s

structure. The bolded facets are used as examples in the

following sections.

As mentioned, we used an adaptation of Usman et al.s
iterative software engineering taxonomy generation method-

ology in order to ensure rigour and to allow a multi-stage

data collection, term extraction, taxonomy construction, and

validation process [4]. We collected articles that discussed

the characteristics of software bots following a systematic

literature review. We extracted any terms used to describe

the observable properties and behaviours of software bots.

The extracted terms were then reduced (through mapping and

merging variant terms) and card sorted to allow the new taxon-

omys dimensions, facets, and facet values to emerge from the

data. More information regarding the full methodology used

to generate this taxonomy is available in Lebeuf’s thesis [3].

Using this methodology, we arrived at a holistic taxonomy

of software bots. At its top level, the taxonomy has three main

3

dimensions: (a) the bot’s environment, (b) the intrinsic prop-

erties of the bot itself, and (c) the bot’s interactions within its

environment. Figure 2 shows an overview of the taxonomy’s

dimensions and their top-level facets. In the following, we

provide a high-level description of our proposed taxonomy. We

refer interested readers to Lebeuf’s thesis [3], where each of

the taxonomy’s dimensions, facets, sub-facets, and facet values

are described in greater detail, along with many examples of

bots classified using the taxonomy.

A. Environment Dimension

To better understand a bot, we have to first understand

its environment. The environment dimension describes the

surroundings in which the bot lives and operates. What we can

observe about bots is how they behave with the environment

around them, therefore, the environment has an influence on

the bot’s behaviours. In the case of a bot operating in many

distinct environments, each of these environments should be

classified independently to provide a more complete picture

of the bot’s environmental influences.

As shown in Fig. 2, there are seven top-level facets that

fall under the environment dimension: type, the bot’s setting;

scope, the size of the bot’s environment; closure, who is able

to access the bot’s environment; dynamism, the degree to

which the bots environment changes; predictability, the de-

gree to which outcomes of the bot’s actions are deterministic;

permanence, how long the effects of the bot’s actions last;

and population1, who else resides in the bot’s environment.

Each of these facets have a set of sub-facets or facet values.

For instance, the type facet represents the setting (often a

system) that the bot inhabits, participates, or accesses. This

facet can have one of two values:

• Standalone: The bot is not tied to a specific platform.

Instead, the bot is hosted independently but can access

platforms in the same way as users. For example, most

video game bots and IRC bots are standalone.

• Platform: The bot can be hosted independently or

through the platform, but accesses the platform through

non-user methods. These kinds of bots augment a sys-

tem’s behaviour. For example, most GitHub and Mi-

crosoft Team’s bots inhabit specific platforms.

B. Intrinsic Dimension

The intrinsic dimension is composed of facets that describe

the properties belonging to the bots themselves. These prop-

erties are controlled at design-time by the bot developers.

Although some of these intrinsic facets touch on the inner

workings of the software bot itself, they are still relatively

visible from a black-box approach2. For the most part, we try

to focus on the externally observable, intrinsic properties of

software bots.

As shown in Fig. 2, the intrinsic dimension has a total of

eight facets3: knowledge, what the bot knows or understands;

1The population facet has two additional subfacets: cardinality and diversity [3].
2We adopted a black-box approach so that software bots could be classified using the

taxonomy even if their inner structures were not known.

reasoning, the bot’s logical capacity; adaptability, the bot’s

ability to modify its own behaviour; goals, the type of future

state the bot is attempting to achieve; delegation, the bot’s

authority to act on behalf of others; specialization, the degree

to which the bot specializes its efforts in a specific area;

anthropomorphism, the degree to which the bot is given

human-like traits; and lifecycle, the phases the bot goes

through in its life.

An example of an intrinsic property is the delegation
facet, describing the bot’s permission to act on behalf of or

to represent others. This facet is defined according to the

following ordinal scale:

• None: The bot does not have the authority to act on

behalf of others. However, bots with this property can

appear to be acting on behalf of users, but do so without

their permission and often with malicious intent (e.g.,

’doppelganger’ bots [40]).

• Partial: The bot has authority to act on behalf of the

user, but does not pretend to be the user, e.g., bots that

complete pull requests on behalf of users.

• Complete: The bot has the authority to both act on behalf

of and pretend to be the user, e.g., bots that complete pull

requests using the users’ credentials.

C. Interaction Dimension

The interaction dimension is composed of facets that de-

scribe the bot’s interactions with different entities in its envi-

ronment. More specifically, they try to focus on the wide range

of externally observable behaviours that the bot can exude

when interacting with the various elements in its environment.

Some of these interaction facets touch somewhat on the

inner workings of bots, yet, they are needed for a black-box
approach2 when examining bot behaviours.

As shown in Fig. 2, there are a total of seven facets4 that

fall under the interaction dimension: access, the bot’s ability

to sense and act within its environment; sense, the degree to

which the bot can perceive environmental stimuli; act, the

bot’s ability to act upon its environment; communicate, the

degree to which the bot can have meaningful interactions with

others; initiative, the way the bot’s environmental interactions

are initiated; robustness, the bot’s error or ambiguity handling;

and mobility, the bot’s ability to move around in its environ-

ment.

An example of an interaction sub-facet that falls under

the communication facet is cardinality. It represents the

number of users that the bot is capable of interacting with

simultaneously. Its values are along the following ordinal

scale:

• One-One: The bot is capable of interacting with one user

at a time. For example, most Microsoft Teams bots that a

user can have direct, private messages with are one-one.

• One-Many: The bot is capable of interacting with many

users simultaneously. For example, most Microsoft Teams

bots on public channels are one-many.

3With an additional 27 sub-facets for these eight intrinsic facets [3].
4With an additional nine sub-facets for these seven interaction facets [3].

4

• Many-Many: The bot is capable of interacting with many

users who are also interacting between themselves, e.g.,

Xiaoice [41].

D. Validation

Following Usman et al.’s guidelines [4], we ensured that the

taxonomy correctly captured the range of observable software

bot properties and behaviours by validating it through: (i)

benchmarking our taxonomy against existing classifications

of software bots; (ii) demonstrating the utility of the taxon-

omy through the tagging of three publicly available software

bots [3, p. 126]; and (iii) testing the utility and usability

of the taxonomy through a domain expert tagging session.

More details regarding our validation efforts can be found in

Lebeuf’s thesis [3].

V. WHY DEFINING & CLASSIFYING BOTS IS IMPORTANT

Ability to identify bots: The taxonomy we developed helps

determine what may or may not be a bot, identify different

bot species, and clarify the differences between bot subtypes

and other types of non-bot programs. For example, it could

be used to better answer questions like how do agents differ
from other bots? Additionally, using the definition we provide

in this paper, we may also be able to more easily ascertain

the number of and nature of bots “in the wild” for specific

domains.

Capture and describe diversity: When validating our tax-

onomy, participants were asked to classify bots they had built

themselves, and were able to do so with little guidance [3].

However, when we attempted to classify bots from previously

published research and literature, we found it extremely chal-

lenging (and in many cases impossible) since key details were

lacking in the authors’ descriptions of their bots. This indicates

to us that having a taxonomy such as the one we propose can

help researchers and designers more clearly describe bots and

compare them with existing bots. Having a set of consistent

terminology in an emerging field (like SE) also makes it easier

to understand and build upon each other’s work, which in turn

speeds up research [4].

Indeed, a taxonomy should allow us to capture the diversity

of bots we see today. In software development, for example,

we often classify bots by their ability to support different

development activities [32], [42] (e.g., assist in code review,

testing, bug fixing, quality checks, deployment), but describ-

ing bots by their goals alone may lead to an impoverished

description. Classifying these bots using other dimensions

can help reveal important similarities and differences between

them. For example, identifying the different mechanisms bots

use to “collaborate” with developers can help reveal insights

into designing bots that focus on mediating the collaboration

between two or more developers.

Document patterns of change: Integrating bots into software

developers’ workflows can lead to changes in the behaviour

and practices of individual members, their teams, and their

organizations. However, documenting these patterns of change

without a description or an understanding of the various bot

species and their characteristics is bound to be very difficult.

For example, Lebeuf et al. [43] used a socio-technical model

to explore how chatbots can help reduce the friction points

software developers face when working collaboratively.

Provide a basis for future guidelines: Although our tax-

onomy is currently non-prescriptive (i.e., it does not provide

guidelines or recommendations for selecting between facet

values), we feel the taxonomy could be used to help develop

a set of best practices for designing bots. Since the taxonomy

describes the set of possible values for each of the facets or

sub-facets, recommendations could be derived by exploring the

variety of bot facets. However, much future work is needed

to develop and evaluate recommendations and best practices

for general and specific domains, as well as to further validate

our proposed taxonomy.

VI. DISCUSSION POINTS

To conclude this paper, we provide a set of questions

that we hope may spark discussion on the classification of

software bots both in this workshop and across the software

bot community.

1) What is a bot to you? Do you agree with our proposed

definition of software bots? What do you see as their

defining characteristics?

2) Do you see a need to have a more formal definition of

software bots?

3) What other facets can/should be added to the taxonomy?

Which ones do you think will become more or less

important as we continue to design, develop, and research

software bots?

4) What kinds of guidelines are needed to guide the design

of bots, especially for specific domains and activities such

as software development?

5) What is your vision for the future role bots may play

in software engineering (or other domains)? Does the

taxonomy prompt you to think of future bot capabilities?

REFERENCES

[1] A. Leonard, Bots: The Origin of New Species. Penguin Books Limited, 1998.
[2] J. Cabot, “Best bots to improve your software development process,” https:

//livablesoftware.com/best-bots-software-development, 2018, [Online; accessed 28-
Feb-2019].

[3] C. Lebeuf, “A taxonomy of software bots: towards a deeper understanding of
software bot characteristics,” Master’s thesis, University of Victoria, 2018.

[4] M. Usman, R. Britto, J. Börstler, and E. Mendes, “Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy development
method,” Information and Software Technology, vol. 85, pp. 43–59, 2017.

[5] W. Thomson, “The sorting demon of maxwell,” in Proceedings of the Royal Society,
vol. 9, 1879, pp. 113–114.

[6] K. Čapek, R.U.R. (Rossum’s Universal Robots). Oxford University Press, 1951,
english translation.

[7] I. Kato, “Development of wabot-1,” Biomechanism, vol. 2, pp. 173–214, 1973.
[8] P. Mowforth and I. Bratko, “AI and robotics; flexibility and integration,” Robotica,

vol. 5, no. 2, pp. 93–98, 1987.
[9] A. M. Turing, “Computing machinery and intelligence,” in Parsing the Turing Test.

Springer, 2009, pp. 23–65.
[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson

Education Limited, 1995, vol. 25, ch. 2.
[11] V. Cerf, “Parry encounters the doctor,” Tech. Rep., 1973.
[12] R. Wallace, “Artificial linguistic internet computer entity (alice),” 1995.
[13] R. Hoffer, T. Kay, P. Levitan, and S. Klein, “Smarterchild,” ActiveBuddy, 2001.
[14] M. L. Mauldin, “Chatterbots, tinymuds, and the turing test: Entering the loebner

prize competition,” in AAAI, vol. 94, 1994, pp. 16–21.
[15] “Verbot sylvie,” Virtual Personalities Inc, 1997.

5

[16] H. S. Nwana, “Software agents: An overview,” The Knowledge Engineering Review,
vol. 11, no. 3, pp. 205–244, 1996.

[17] J. Sculley, “The knowledge navigator,” 1987, educom Keynote.
[18] S. D. Bird, “Toward a taxonomy of multi-agent systems,” International Journal of

Man-machine Studies, vol. 39, no. 4, pp. 689–704, 1993.
[19] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy for

autonomous agents,” in International Workshop on Agent Theories, Architectures,
and Languages, 1996, pp. 21–35.

[20] Z. Huang, A. Eliens, A. van Ballegooij, and P. de Bra, “A taxonomy of web agents,”
in Proceedings of the 11th International Workshop on Database and Expert Systems
Applications, 2000, pp. 765–769.

[21] S. Munroe and M. Luck, “Agent autonomy through the 3m motivational taxonomy,”
in Proceedings of the International Conference on Agents and Computational
Autonomy, 2003, pp. 55–67.

[22] P. T. Tosic and G. A. Agha, “Towards a hierarchical taxonomy of autonomous
agents,” in IEEE International Conference on Systems, Man and Cybernetics, 2004,
pp. 3421–3426.

[23] J. Aguero, M. Rebollo, C. Carrascosa, and V. Julian, Agent Capability Taxonomy
for Dynamic Environments. Springer Berlin Heidelberg, 2012, pp. 37–48.

[24] G. Sakarkar and N. M. Shelke, “A new classification scheme for autonomous
software agent,” in International Conference on Intelligent Agent Multi-agent
Systems, 2009, pp. 1–2.

[25] A. Hector and V. L. Narasimhan, “A new classification scheme for software agents,”
in Third International Conference on Information Technology and Applications,
2005, pp. 191–196.

[26] H. V. D. Parunak and M. Fleischer, “A design taxonomy of multi-agent interac-
tions,” in International Workshop on Agent-Oriented Software Engineering, 2003,
pp. 123–137.

[27] M. Huhns and M. P. Singh, “Agents and multiagent systems: Themes, approaches
and challenges,” in Readings in Agents, 1998, ch. 1.

[28] L. J. Moya and A. Tolk, “Towards a taxonomy of agents and multi-agent systems,”
in Proceedings of the Spring Simulation Multiconference, 2007, pp. 11–18.

[29] E. Paikari and A. van der Hoek, “A framework for understanding chatbots and their
future,” The 11th International Workshop On Cooperative and Human Aspects of
Software Engineering an ICSE workshop, 2018.

[30] L. Rosenfeld and P. Morville, Information Architecture for the World Wide Web.
O’Reilly Media, Inc, 2002.

[31] C. Vouillon. (2015) Software bots: From do-it-yourself companion bots
to AI powered software. [Online]. Available: https://medium.com/point-nine-
news/software-bots-c56aeedcfec3

[32] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot at
a time,” in Proceedings of the 24th ACM Sigsoft International Symposium on
Foundations of Software Engineering, 2016, pp. 928–931.

[33] B. Nerds. (2017) Types of bots: An overview. [Online]. Available: http:
//botnerds.com/types-of-bots/

[34] A. Zantal-Wiener, “Where Do Bots Come From? A Brief History,” https://blog.
hubspot.com/marketing/where-do-bots-come-from, 2017, [Online; accessed 28-
Feb-2019].

[35] R. Dale, “The return of the chatbots,” Natural Language Engineering, vol. 22,
no. 5, pp. 811–817, 2016.

[36] K. Iqbal, I. Berry, L. Spacil, C. Qian, and R. Standefer, “About Azure Bot
Service,” https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-
introduction?view=azure-bot-service-3.0, 2019, [Online; accessed 28-Feb-2019].

[37] G. Maus, “A typology of socialbots (abbrev.),” in Proceedings of the ACM
Conference on Web Science, 2017, pp. 399–400.

[38] “Bot definition,” https://en.oxforddictionaries.com/definition/bot, Oxford English
dictionary, [Online; accessed 28-Feb-2019].

[39] P. Brown, J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, “OASIS
Reference Architecture Foundation for Service Oriented Architecture,” https://www.
oasis-open.org/committees/soa-rm, 2012, [Online; accessed 28-Feb-2019].

[40] O. Goga, G. Venkatadri, and K. P. Gummadi, “The doppelgänger bot
attack: Exploring identity impersonation in online social networks,” in
Proceedings of the 2015 Internet Measurement Conference, ser. IMC ’15.
New York, NY, USA: ACM, 2015, pp. 141–153. [Online]. Available:
http://doi.acm.org/10.1145/2815675.2815699

[41] J. Markoff and P. Mozur, “For Sympathetic Ear, More Chinese Turn to Smart-
phone Program,” https://www.nytimes.com/2015/08/04/science/for-sympathetic-
ear-more-chinese-turn-to-smartphone-program.html, 2015, [Online; accessed 28-
Feb-2019].

[42] C. Lebeuf, M. A. Storey, and A. Zagalsky, “Software bots,” IEEE Software, vol. 35,
no. 1, pp. 18–23, 2018.

[43] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “How software developers mitigate
collaboration friction with chatbots,” 2017.

6

