
TEL-AVIV UNIVERSITY
RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES
BLAVATNIK SCHOOL OF COMPUTER SCIENCE

Investigating Opportunistic Software
Development Using Social Media

Recommendation System

Master’s Thesis submitted in partial fulfillment of the requirements for the
M.Sc. degree in the School of Computer Science, Tel-Aviv University

by

Alexey Zagalsky

under the supervision of
Prof. Amiram Yehudai

August 2013





Abstract

Software developers face a constantly changing set of programming languages, platforms
and technologies. Software projects may involve numerous technologies or platforms, while
software developers are not able to master them all. In order to overcome these challenges soft-
ware developers seek help on Question and Answer (Q&A) websites such as Stack Overflow.
We believe that Q&A websites’ success is related to the rapid pace of technology changes,
where wikis and official documentation lag behind. By using social media, and specifically
Q&A websites, developers might be able to mitigate these concerns. Stack Overflow embod-
ies domain knowledge not only in the form of Q&A or comments but as source code as well,
where developers post code snippets embedded in their question or answer. Whereas social
media will play an increasingly important role in software engineering research and practice,
there are currently few software development tools available that leverage social media, and
even fewer code recommendation systems based on social media.

We begin our research with the aim of creating a recommendation system to support exam-
ple usage while leveraging social media. But one can’t design such a system without studying
human-machine interactions, and most importantly human behavior in software development.
Furthermore, designing useful tools for developers requires to identify the concerns and micro-
activities involved in example usage when using social media. Our aim is then not the design of
a tool or a recommendation system, but rather to investigate concerns involved in opportunistic
software development with the use of the system we designed.

We choose to employ qualitative research methodology with design-based research method.
Qualitative research methodology can deal with complexities that arise from not only technical
issues in software development, but from human-machine interactions, and most importantly
from human behavior in software development.

An example usage survey among professional developers regarding activities, provides the
basis for the design and design decisions of a social media based recommendation system. We
follow the design decisions and implement Example Overflow, a code search and recommen-
dation system which brings together social media and code recommendation systems.

Based on Example Overflow, we conduct a user study, involving observations and inter-
views with professional developers asked to solve pre-determined tasks. We find that profes-
sional software developers have concerns related to example usage, concerns that govern how
and when examples are used. However, developers do not avoid example usage altogether, but
rather mitigate these concerns with micro-activities.



ii



Acknowledgements

I wish to thank my advisor Amiram Yehudai. I am grateful for his guidance, constantly positive
attitude, feedback and support. He allowed me to be independent and was willing to give me
the time needed to learn from my own mistakes.

I wish also to thank Ohad Barzilay for helping me make progress, even when it was hard
to do so. In addition to his academic advice, I appreciate him as a mentor and a friend.

I would like to thank my fellow students and office colleagues for their support, advice and
friendship. In particular I wish to thank Mati Shomrat, Tamar Lavee, Liron Cohen, Ori Lahav,
Lena Dankin, Yoni Zohar, and Udi Boker.

Finally, I want to thank the participants of the user study who were willing to spend their
time, and agreed to be observed and questioned while they were working under pressure and
out of their comfort zone.

This research was supported in part by The Israel Science Foundation (grant No.476/11).

iii



iv



“To raise new questions, new possibilities, to regard old problems from a new angle, requires
creative imagination and marks real advance in science.”

Albert Einstein

v



vi



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Social Media in Software Engineering . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stack Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Code Recommendation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Study of Professional Developers . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Example Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Concerns Related to Example Usage . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methodology 12
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Qualitative Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Design-Based Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Research Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Qualitative Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Example Overflow 31
4.1 Social Media Based Recommendation System Design Decisions . . . . . . . . 31
4.2 Example Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Preliminary Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Investigating Opportunistic Software Development Using Social Media Recom-
mendation System 39
5.1 Is Limiting Software Development in Example Driven Manner Helpful? . . . . 39
5.2 How Do Professional Developers Mitigate Concerns Related to Example Usage? 42
5.3 What are the Micro-Activities Involved in Opportunistic Development When

Using Social Media Based Recommendation System? . . . . . . . . . . . . . . 46
5.4 When Searching for Code Examples, Do Developers Refine Their Query or

Continue Examining Additional Results? . . . . . . . . . . . . . . . . . . . . 49
5.5 How Many Code Examples are Examined Before Choosing a Suitable Code

Example? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 When Searching for Code Examples, Do Developers Use Additional Context ? 53

vii



6 Summary 55

viii



List of Figures

3.1 Research tools used for each research question . . . . . . . . . . . . . . . . . . 14
3.2 Research course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Screen capture of part of the online survey . . . . . . . . . . . . . . . . . . . . 17
3.4 Professional developers survey: years of experience as a developer . . . . . . . 18
3.5 Form used to collect data during observation of participant 4, task 3 . . . . . . 24
3.6 Form used to collect data during observation of participant 4, task 4 . . . . . . 25

4.1 Example Overflow screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Stack Overflow user interface analysis . . . . . . . . . . . . . . . . . . . . . . 35

5.1 “The first example seems irrelevant to me. It’s too complicated” - participant
7, during task 1 of user study . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Overview diagram of concerns related to example usage and how they are mit-
igated by each micro-activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



x



List of Tables

3.1 How often do you look for examples in your work? . . . . . . . . . . . . . . . 19
3.2 Initial data analysis example: table for phase I analysis of participant 4, task 3 . 27
3.3 Data analysis example: transcribed data form of participant 4, task 3 . . . . . . 29
3.4 Data analysis example: analysis of the data from Table 3.3 . . . . . . . . . . . 30

4.1 Search queries used for the evaluation benchmark . . . . . . . . . . . . . . . . 37
4.2 Search result comparison: rank of a suitable example at the returned search

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Context switching comparison: the number of mouse clicks required by the

developer to see the actual code example. . . . . . . . . . . . . . . . . . . . . 38

5.1 RQ1: Score of each research participant per task . . . . . . . . . . . . . . . . . 41
5.2 RQ1: Comparison between the groups for average score per task . . . . . . . . 41
5.3 RQ1: Ability of each participant to find a suitable example per task . . . . . . . 41
5.4 RQ1: Comparison between the groups for ability of each participant to find a

suitable example per task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Example usage: as a code snippet (copy/paste) vs. as a reference . . . . . . . . 48
5.6 RQ4: Number of queries per task . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 RQ4: Comparison between the groups for number of queries per task . . . . . 50
5.8 RQ5: Number of code examples examined before copy/paste . . . . . . . . . . 52
5.9 RQ5: Comparison between the groups for number of code examples examined

before copy/paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.10 RQ6: Number of times a participant viewed additional context per task . . . . . 53
5.11 RQ6: Comparison between the groups for number of times viewed additional

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



xii



Chapter 1

Introduction

In the following thesis we describe our qualitative research investigating opportunistic software
development using social media based recommendation system. We design a social media
based code recommendation system, and investigate concerns involved in opportunistic soft-
ware development with the use of the system we designed. We find that professional software
developers have concerns related to example usage, concerns that govern how and when exam-
ples are used. However, developers do not avoid example usage altogether, but rather mitigate
these concerns with micro-activities.

1.1 Background and Motivation

The success of social media has introduced new ways of exchanging knowledge via the Internet,
and leveraging this knowledge is an important skill for a professional software developer[49].
Software developers face a constantly changing set of programming languages, platforms and
technologies. Software projects may involve numerous technologies or platforms, while soft-
ware developers are not able to master them all. In order to overcome these challenges software
developers seek help on Question and Answer (Q&A) websites such as Stack Overflow1. De-
velopers faced with a problem post questions on Q&A websites, while other members of the
community may answer it, or add different answers to the existing ones. If the community is
large enough, questions would be answered quickly, and common questions may have been
answered previously. Stack Overflow, a popular Q&A website, uses social mechanisms to
facilitate knowledge exchange between users and to create an information archive. In Stack
Overflow, a programmer can ask a question about almost any programming related topic, and
receive a detailed response within 10 minutes median [35]. The way Stack Overflow is de-
signed allows each question and answer to be rated. Eventually for each question, the best
answer is chosen to be "the accepted answer" for that question. In addition, members can edit
each question and each answer to allow the information to constantly evolve and remain up to
date. If we look at the publicly available Stack Overflow usage statistics2: 2.08M users, 5.18M
questions, 9.53M answers and 5.47 questions per minute, we can see signs of its success3. We
believe that Q&A websites’ success is related to the rapid pace of technology changes, where

1http://stackoverflow.com/
2http://api.stackoverflow.com/1.1/usage/methods/stats
3http://blog.ninlabs.com/2013/03/api-documentation/

1



wikis and official documentation lag behind. By using social media, and specifically Q&A
websites, developers might be able to mitigate these concerns. Stack Overflow embodies do-
main knowledge not only in the form of Q&A or comments but as source code as well, where
developers post code snippets embedded in their question or answer. Whereas social media will
play an increasingly important role in software engineering research and practice[49], there are
currently few software development tools available that leverage social media, and even fewer
code recommendation systems based on social media. Brandt et al. propose [10] that em-
bedding a task-specific search engine in the development environment can significantly reduce
the cost of finding information and thus enable programmers to write better code more easily.
They developed Blueprint, a Web search interface integrated into the Adobe Flex Builder de-
velopment environment that helps users locate example code. Ponzanelli et al.[43] present a
recommendation system in the form of a plugin for Eclipse IDE allowing automatic query gen-
eration based on keywords extracted from the code, mining Stack Overflow knowledge base,
and displaying the result inside the IDE, thus minimizing context switching.

We begin our research with the aim of creating a recommendation system to support ex-
ample embedding Eco-system[6] while leveraging social media. But one can’t design such a
system without studying human-machine interactions, and most importantly human behavior
in software development. Latoza and Myers[32] describe a design process intended to design
useful tools for developers, tools that support software development work. They describe hi-
erarchical decomposition of software development work into tasks through task analysis [14].
In each task at each level in the decomposition, developers have a goal, either a question to
answer or something to accomplish. At the highest level tasks reflect activities, e.g. imple-
menting features or refactoring. The activities can be further decomposed into sub-activities,
e.g. understanding the code or debugging. At a lower level, developers formulate a specific
plan for accomplishing a goal as a sequence of steps or a strategy. Useful tools are tools that
support work by making a strategy faster or more successful. Similarly, we need to identify the
concerns and micro-activities involved in example usage when using social media. Our aim is
then not the design of a tool or a recommendation system, but rather to investigate concerns
involved in opportunistic software development with the use of the system we designed.

We choose to employ qualitative research methodology with design-based research method.
Qualitative research methodology can deal with complexities that arises from not only technical
issues in software development, but from human-machine interactions, and most importantly
from human behavior in software development. Qualitative research aims to study complexi-
ties of human behavior (e.g. motivation), and the reasons for that behavior. Furthermore, we
are interested to investigate research questions with real practitioners, while collecting a broad
set of data of various types. We use qualitative research tools, a survey, participant obser-
vations, and interviews to gather the data, and apply qualitative data analysis. Design-based
research is one of the qualitative research methods, its goal is to design, create and study a sin-
gle theoretically-inspired system or environment, as it systematically changed through multiple
iterations, while simultaneously improving practices based on collaboration with practitioners
in real-world settings, and leading to contextually-sensitive design principles and theories[56].

An example usage survey among professional developers regarding activities, provides the
basis for the design and design decisions of a social media based recommendation system. Two
main design decisions are formed - allowing comparison of multiple examples, and minimizing
context switching. Secondary design decisions are also resolved by confirming with the litera-
ture, e.g. when deciding how many recommendation results are to be shown, we follow [21],

2



and confirm this with an initial benchmark of Example Overflow. They conduct an eye track-
ing analysis for Google search users, and show that there is a drop in viewing time and number
of clicks at the 6/7 ranked results. We follow the design decisions and implement Example
Overflow (EO), a code search and recommendation system which brings together social media
and code recommendation systems. Example Overflow mines Stack Overflow’s data, searching
for accepted answers that have code snippets in them. We follow a conservative approach by
choosing only accepted answers to ensure retrieval of high quality results. It analyzes these
answers and extracts the code snippet and all the accompanying information: the question title,
the question body, the answer body, the code snippet itself, the user rating of the answer from
Stack Overflow, the view count of the question, the tags associated with the question and other
relevant information. Example Overflow provides code recommendations by using a keyword
search based on the term frequency-inverse document frequency (tf-idf) weight [58], while
leveraging the social media provided by Stack Overflow - it uses both the code snippet and the
additional metadata which accompanied the code snippet at Stack Overflow. This allows a de-
veloper to find code snippets that may not contain the search query keyword, but the keyword
appears in the contextual data and indicates that it has been used in that context.

Based on Example Overflow, we conduct a user study, involving observations and inter-
views with professional developers asked to solve pre-determined tasks. We find that profes-
sional software developers have concerns related to example usage, concerns that govern how
and when examples are used. However, developers do not avoid example usage altogether, but
rather mitigate these concerns with micro-activities.

1.2 Findings and Contributions

The contribution of the research described in this thesis arises from the type of research ques-
tions we have chosen to follow and the complexities involved. We study real practitioners,
professional software developers, and their behavior while investigating opportunistic software
development using social media recommendation systems. We use qualitative research method-
ology, with qualitative research tools: surveys, participant observations and interviews. Large
qualitative datasets of various types, represented as words and pictures, are collected by many
different participants, introducing substantial problems of alignment, coordination, and analy-
sis.

Furthermore, we design a social media based code recommendation system, Example Over-
flow, as part of the design-based research (DBR) method. However, social media is an emerg-
ing topic in the field of software engineering, and social media based recommendation systems
are scarce. Employing DBR means that we need to correctly analyze the design decisions
and form an effective design. DBR researchers sometimes compare this to the “egg drop”
experiment[16], where students are given raw eggs and a few basic materials. They are asked
to construct a “packaging” for an egg that will cushion it from breakage, even when dropped
from a considerable height. This is not an easy task, oftentimes scholars fail to identify the key
features that lead to an effective design. An important contribution of our research is the actual
design and implementation of Example Overflow, a social media based code recommendation
system.

Specifically, our research answers the following research questions:

3



RQ1: Is limiting software development in example driven manner helpful?

In economics and law fields, paternalism[18] is the interference of a state or an individual with
a person or a group’s liberty or autonomy for their own good. For example the compulsory
wearing of seat-belts[13]. Looking at knowledge worker studies[28] and knowledge worker
management guides[15], we see that autonomy is important to knowledge workers, however,
some efforts to improve knowledge worker performance may involve limiting his autonomy.
Can a similar approach be applied by limiting software development in example driven man-
ner? One would expect that limiting may hinder or slow developers, prevent them from using
certain resources. On the other hand, limiting developers in example driven manner, especially
in opportunistic development, where time is of the essence, may benefit them: they’ll be more
focused with the task at hand, use more examples and create quick prototypes. We divide
participants of the user study to two groups and compare their results, participants who are lim-
ited to searching with a social media example code recommendation system, and participants
who are not limited. Our study shows that limiting professional developers in example driven
manner did not improve their results.

RQ2: How do professional developers mitigate concerns related to example usage?

Services ,such as Stack Overflow, Github, Sourceforge, allow developers to access vast amount
of source code on-line. Furthermore, some of the available code is reviewed, debugged and
patched by other developers and may be considered as a high quality source for code snippets.
On the other hand, as shown in our survey (see Section 3.4.1), example usage is a popular prac-
tice among developers, yet developers have concerns involved with example usage. Developers
may hesitate to use or admit they use code examples. We identify the concerns professional
developers have when using examples and see how they mitigate them in opportunistic devel-
opment.

RQ3: What are the micro-activities involved in opportunistic development when using
social media based recommendation system?

We use observations and interviews to identify micro-activities involved in opportunistic de-
velopment when using social media based recommendation system. Specifically, we focus
on activities that mitigate the concerns involved with example usage. We identified 5 micro-
activities to mitigate concerns involved with example usage: task comprehension, forming and
refining the query, browsing and examining results, reading additional context, and diversity in
using the example.

RQ4: When searching for code examples, do developers refine their query or continue
examining additional results?

When searching for examples, do developers use a single query to initiate a search and examine
all results without refining their query, or do they work iteratively: form a query, initiate a
search, examine results, refine query, and repeat the process until choosing a suitable example.
We show the overall number of queries used by a developer per task is 5.95. Participants who
used Example Overflow had an average of 7.7 queries per task, while participants who used
Google search had an average of 4.2 queries per task.

4



RQ5: How many code examples are examined before choosing a suitable code example?

Granka et al.[21] conduct an eye tracking analysis for Google search users, and show that there
is a drop in viewing time and number of clicks at the 6/7 ranked results, and a sharp drop occurs
after result 10, as ten results are displayed per page. However, [21] investigated “regular”
search with Google search, while we are interested with code example search based on social
media recommendation systems. We speculate that a developer examines 3 code examples (in
average) before choosing a suitable code example. Determining the average number of code
examples examined by a developer before choosing a suitable code example, may influence
the design of code recommendation tools, and specifically social media based recommendation
tools. In our study, we found that the average number of code examples a developer would
examine before doing copy/paste is 2.02.

RQ6: When searching for code examples, do developers use additional context?

If developers use or rely on additional context, it implies that offering a rich-verbose context
in place, as an integral part of the code snippet, addresses a genuine need of the developers.
“Complementary” tools that are lacking this functionality are missing an important require-
ment. If developers don’t use additional context, it should be further investigated whether this
additional context, though not used by many developers, is important - if so look for ways to
encourage developers to use it. If not (not used, not important) - pragmatic tools such as Ex-
ample Overflow could justify “hiding” additional context and offer clean code / improve code
browsing.

1.3 Thesis Outline
In chapter 2 we review related work. This research involves multiple research fields in the
area of software engineering. We discuss social media influence on software engineering, code
recommendation systems and the combination of the two. We present related work involving
the study of software developers, and overview the research tools used. We present work re-
lated to example usage among software developers, and we discuss work that may help with
identification of example usage concerns among developers.

In chapter 3 we describe the methodology used for this research. The type of research
questions we engage with, require the choice of an appropriate research methodology. A re-
search methodology that can deal with complexities that arises from not only technical issues in
software development, but from human-machine interactions, and most importantly from hu-
man behavior in software development. Additionally, we are interested to investigate research
questions with real practitioners, while collecting a broad set of data. We choose to employ
qualitative research methodology with design-based research method, we carefully follow the
methodology practices and guidelines to ensure the validity of the methods used. In this chapter
we elaborate on the research methodology, the research course and the research tools used.

In chapter 4 we describe the design, design decisions and implementation of a Social Media
based Code Recommendation System (SMCRS). As part of the design-based research, we de-
signed and implemented Example Overflow, a code search and recommendation system which
brings together social media and code recommendation systems, that allowed us to test and an-
alyze different design decisions of social media based recommendation systems. We conclude

5



this chapter by presenting an initial benchmark of Example Overflow.
In chapter 5 we provide the results of our research. We examine each research question,

provide the relevant experiment data, and discuss possible implications.
In chapter 6 we conclude this thesis.

6



Chapter 2

Related Work

In this chapter we present the related work concerning this thesis. Our research lies in the fields
of social media in software engineering and code search and recommendation systems. More
importantly, our research involves not only the study of software development, but the software
developers themselves and their behavior. We investigate professional software developers and
characterize concerns and micro-activities related to example usage.

In Section 2.1 we discuss social media influence on software development. In Section
2.2 we focus our discussion to Stack Overflow, a specific source of social media in software
engineering. In Section 2.3 we present code search engines and recommendation systems. In
Section 2.4 we discuss the study of professional developers. In Section 2.5 we discuss example
usage among professional developers and the programming skills involved with example usage.
In Section 2.6 we discuss software developers’ concerns related to example usage.

2.1 Social Media in Software Engineering

Social media provides useful recommendations for many areas of our lives. For example, when
considering what movies to watch, one may use recommendations from his or her immediate
social cycle (e.g. Facebook friends), or use the wisdom of the crowd [52], using, for instance,
the ratings on imdb.com. This is part of a more general trend in which social recommendations
(e.g. Facebook) have begun to replace search (e.g. Google Search). The Software Engineering
(SE) domain is no different; social media has been shown to be beneficial in many areas of SE
including feature prioritization [2], risk analysis [51], collaborative filtering [23], knowledge
management [25], and documentation [9] [54][40]. The current adoption of social media in
processes and integrated development environments is just scratching the surface of what can
be done by incorporating social media approaches and technologies into software development.

Storey et al. [49] discuss the impact of social media on software engineering practices and
tools. They argue how and why social media will play an increasingly important role in software
engineering research and practice. Treude et al.[55] discuss the opportunities and challenges
for software developers that rely on web content curated by the crowd, and discuss the future
of an industry where individual developers benefit from and contribute to a body of knowledge
maintained by the crowd using social media.

7



2.2 Stack Overflow

Stack Overflow uses social mechanisms to facilitate knowledge exchange between users
and to create an information archive. In Stack Overflow, a programmer can ask a question
about almost any programming related topic, and receive a detailed response within 10 min-
utes median [35]. Answers on Stack Overflow often become a substitute for official product
documentation, when the official documentation is sparse or currently non-existent1. Treude et
al.[54] analyze data from Stack Overflow to categorize the kinds of questions that are asked,
and to explore which questions are answered well and which ones remain unanswered. Their
preliminary findings indicate that Q&A websites are particularly effective at code reviews and
conceptual questions. The way Stack Overflow is designed allows each question and answer to
be rated. Eventually for each question, the best answer is chosen to be "the accepted answer"
for that question. In addition, members can edit each question and each answer to allow the in-
formation to constantly evolve and remain up to date. Finally, Stack Overflow has an enormous
community of members, it is an already big knowledge base and it is constantly growing2.

Parnin et al.[41] conduct an empirical study to investigate how Question and Answer (Q&A)
websites, such as Stack Overflow, facilitate crowd documentation - knowledge that is written by
many and read by many. They examine the crowd documentation for three popular APIs: An-
droid, GWT, and the Java programming language. They collect usage data using Google Code
Search, and analyze the coverage, quality, and dynamics of the Stack Overflow documentation
for these APIs. They find that the crowd is capable of generating a rich source of content with
code examples and discussion that is actively viewed and used by many more developers.

1https://stackoverflow.fogbugz.com/default.asp?W25450
2http://api.stackoverflow.com/1.1/usage/methods/stats

8



2.3 Code Recommendation Tools
Tools such as Strathcona [27] and PARSEWeb [53] provide developers with code fragment
recommendations, taken from a central code repository, by generating queries based on code
context and the structural details of the developer’s activity. The quality of the code found
by these tools is derived from the overall quality of the repositories they use. Code search
engines, on the other hand, such as Krugle3 and Koders4, search in a large set of open source
repositories, but do not provide explicit mechanisms to evaluate or improve the quality of the
found snippets. Other tools like MICA [50], Exemplar [22] or [36] use API calls or API
examples to recommend example code, but they are restricted to providing a limited set of
examples based on the API only.

Brandt et al. propose [10] that embedding a task-specific search engine in the develop-
ment environment can significantly reduce the cost of finding information and thus enable
programmers to write better code more easily. They developed Blueprint, a Web search inter-
face integrated into the Adobe Flex Builder development environment that helps users locate
example code. Ponzanelli et al.[43] present a recommendation system in the form of a plugin
for Eclipse IDE allowing automatic query generation based on keywords extracted from the
code, mining Stack Overflow knowledge base, and displaying the result inside the IDE, thus
minimizing context switching.

2.4 Study of Professional Developers
Sillito and Begel[47] studied software developers by using an interview and a diary study where
developers shared their experience learning to develop Windows Phone applications. They
characterize the learning strategies of the subjects as app-directed, and describe some of the
particular challenges the subjects faced due to this strategy.

Miryung et al.[29] conducted a qualitative study in order to understand programmers’
copy/paste programming practices and discover opportunities to assist common copy/paste
usage patterns. They use observations and follow-up interviews to construct a taxonomy of
copy/paste usage patterns.

Brandt et al.[11] describe two studies of how programmers use online resources. In one
of the studies, conducted in the lab, they observed participants’ Web use while building an
online chat room. They found that programmers leverage online resources with a range of
intentions: For just-in-time learning of new skills and approaches, to clarify and extend their
existing knowledge, and to remind themselves of details deemed not worth remembering.

Latoza and Myers [32] discuss design of useful tools for software developers. They describe
a design process intended to design useful tools for developers, tools that support software de-
velopment work. They describe hierarchical decomposition of software development work into
tasks through task analysis [14]. In each task at each level in the decomposition, developers
have a goal, either a question to answer or something to accomplish. At the highest level
tasks reflect activities, e.g. implementing features or refactoring. The activities can be further
decomposed into sub-activities, e.g. understanding the code or debugging. At a lower level, de-
velopers formulate a specific plan for accomplishing a goal as a sequence of steps or a strategy.

3http://www.krugle.com/
4http://koders.com/

9



Useful tools are tools that support work by making a strategy faster or more successful. They
advocate the use of exploratory study, involving interviews and observations, for evaluation
of the design. They conclude that designing a useful tool requires more than finding a com-
pelling motivating example, evaluating the tool’s technical merits, and performing a carefully
designed user study. Designing a useful tool requires understanding how a tool supports work
and addresses an important problem that developers face.

LaToza et al.[33] investigates developers’ typical tools, activities, and practices. Contrary to
expectations that code duplication involves the copy and paste of code snippets, they found that
developers reported several types of duplication. They used various research tools, a survey
about activities, tools, and problems, a series of semi-structured interviews, and a follow-up
survey of work practices. In our research, we use similar research tools to gather data, we use
a survey to form our research questions and design. But the type of research questions we
engage with, questions trying to understand developers’ behavior, requires additional research
tools. We use participant observations and structured interviews to investigate professional
software developers’ behavior related to example usage.

2.5 Example Usage
Programming by example was found to be intuitive to many developers, novices and experts
alike [31]. Neal[38] presents an example-based programming approach. She implements an
example-based programming environment, and conducts an experiment with students given a
task to be solved with ability to use the example-based environment. She discusses the motiva-
tion for example-based programming, and reports on the results of the experiment to see how
the system is used by programmers. Interestingly, she characterizes early signs of diversity
in example usage. Barzilay[6] investigates example usage among professional software devel-
opers. He used various tools for data gathering that included field observations, interviews,
surveys, reflective questionnaires, focus groups and virtual focus groups, to show different as-
pects of example usage diversity.

Nasehi et al.[37] conducted a qualitative analysis of the questions and answers posted to
a Stack Overflow. By analyzing answers that were well-received, i.e. accepted answers or
highly rated answers, they identified the characteristics of effective examples. They found that
the explanations accompanying examples are as important as the examples themselves. We
will investigate this further, by examining whether professional software developers use the
additional context surrounding the example.

2.6 Concerns Related to Example Usage
Reimenschneider et al.[45] investigate why individual developers accept or resist methodolo-
gies deployed in order to improve software development processes. They conduct a field study
with developers in a large organization that implemented a methodology, testing five theoreti-
cal models of individual intentions to accept information technology. They found, similarly to
findings from the tool adoption context[19], that if a methodology is not regarded as useful by
developers, its prospects for successful deployment may be severely undermined. But, in con-
trast to the typical pattern of findings in a tool context, they found that methodology adoption
intentions are driven by: (1) the presence of an organizational mandate to use the methodology,

10



(2) the compatibility of the methodology with how developers perform their work, and (3) the
opinions of developers’ coworkers and supervisors toward using the methodology. In a similar
manner, we are interested to investigate why developers accept or resist example usage, what
concerns professional developers may have related to example usage when using social media.
Furthermore, we examine the reasons developers choose a certain code example over another,
and discuss the factors determining the acceptance of an example.

We are also interested whether limiting software development in an example driven manner
is helpful. Janz et al.[28] conducted a study investigating how autonomy, interdependence,
and team development were related to the effectiveness of teams of knowledge workers. Their
results suggest that the positive relationship between team autonomy and team job motivation
was reduced as teams worked under more interdependent conditions. This interaction effect
also varied across the types of autonomy the team was given. In [15] the author suggests that
although knowledge workers prefer autonomy, it doesn’t mean they should always be given the
maximum amount of it. Some efforts to improve knowledge worker performance may involve
removing some discretion from the knowledge worker.

11



Chapter 3

Methodology

The type of research questions we engage with, require the choice of an appropriate research
methodology. A research methodology that can deal with complexities that arises from not
only technical issues in software development, but from human-machine interactions, and most
importantly from human behavior in software development. Additionally, we are interested to
investigate research questions with real practitioners, while collecting a broad set of data. We
choose to employ qualitative research methodology with design-based research method, we
carefully follow the methodology practices and guidelines to ensure the validity of the methods
used. In the following we elaborate on the research methodology, the research course and the
research tools used.

3.1 Research Questions

This thesis answers the following research questions:

RQ1: Is limiting software development in example driven manner helpful?

In economics and law fields, paternalism[18] is the interference of a state or an individual with a
person or a group’s liberty or autonomy for their own good. For example the compulsory wear-
ing of seat-belts[13]. In knowledge worker studies[28] and knowledge worker management
guides[15], we see that autonomy is important to knowledge workers, however, some efforts to
improve knowledge worker performance may involve limiting their autonomy. Can a similar
approach be applied by limiting software development in example driven manner? One would
expect that limiting may hinder or slow developers, prevent them from using certain resources.
On the other hand, limiting developers in example driven manner, especially in opportunistic
development, where time is of the essence, may benefit them: they’ll be more focused with the
task at hand, use more examples and create quick prototypes. We divide participants of the user
study to two groups and compare their results, participants who are limited to searching with a
social media example code recommendation system, and participants who are not limited. Our
study shows that limiting professional developers in example driven manner did not improve
their results. We use observations to answer this question.

12



RQ2: How do professional developers mitigate concerns related to example usage?

Services ,such as Stack Overflow, Github, Sourceforge, allow developers to access vast amount
of source code on-line. Furthermore, some of the available code is reviewed, debugged and
patched by other developers and may be considered as a high quality source for code snippets.
On the other hand, as shown in our survey (see Section 3.4.1), example usage is a popular prac-
tice among developers, yet developers have concerns involved with example usage. Developers
may hesitate to use or admit they use code examples. We identify the concerns professional
developers have when using examples and see how they mitigate them in opportunistic devel-
opment.

RQ3: What are the micro-activities involved in opportunistic development when using
social media based recommendation system?

We use observations and interviews to identify micro-activities involved in opportunistic de-
velopment when using social media based recommendation system. Specifically, we focus on
activities that mitigate the concerns involved with example usage.

RQ4: When searching for code examples, do developers refine their query or continue
examining additional results?

When searching for examples, do developers use a single query to initiate a search and examine
all results without refining their query, or do they work iteratively: form a query, initiate a
search, examine results, refine query, and repeat the process until choosing a suitable example.

RQ5: How many code examples are examined before choosing a suitable code example?

Granka et al.[21] conduct an eye tracking analysis for Google search users, and show that there
is a drop in viewing time and number of clicks at the 6/7 ranked results, and a sharp drop occurs
after result 10, as ten results are displayed per page. However, [21] investigated “regular”
search with Google search, while we are interested with code example search based on social
media recommendation systems. We speculate that a developer examines 3 code examples (in
average) before choosing a suitable code example. Determining the average number of code
examples examined by a developer before choosing a suitable code example, may influence
the design of code recommendation tools, and specifically social media based recommendation
tools.

RQ6: When searching for code examples, do developers use additional context?

If developers use or rely on additional context, it implies that offering a rich-verbose context
in place, as an integral part of the code snippet, addresses a genuine need of the developers.
“Complementary” tools that are lacking this functionality are missing an important require-
ment. If developers don’t use additional context, it should be further investigated whether this
additional context, though not used by many developers, is important - if so look for ways to
encourage developers to use it. If not (not used, not important) - pragmatic tools such as Ex-
ample Overflow could justify “hiding” additional context and offer clean code / improve code
browsing.

13



Figure 3.1 illustrates what research tools are used to answer each research question.

Figure 3.1: Research tools used for each research question

3.2 Qualitative Research

Qualitative research aims to study complexities of human behavior (e.g. motivation), and the
reasons for that behavior. Denzin & Lincoln[17] define qualitative research as: A situated
activity that locates the observer in the world. It consists of a set of interpretive, material prac-
tices that makes the world visible. These practices transform the world. They turn the world
into a series of representations, including field notes, interviews, conversations, photographs,
recordings, and memos to the self. At this level, qualitative research involves an interpretive,
naturalistic approach to the world. This means that qualitative researchers study things in
their natural settings, attempting to make sense of, or to interpret, phenomena in terms of the
meanings people bring to them.

Seaman[46] describes several qualitative methods for data collection and analysis, and de-
scribes how they might be incorporated into empirical studies of software engineering. She
illustrates the use of qualitative methods with examples from real software engineering studies.
In our research, we follow her data collection methods (participant observation, interviews),
and data analysis methods.

Singer et al.[48] present work practice data of the daily activities of software engineers.
They present four separate studies, discuss the advantages in considering work practices in
designing tools for software engineers, and include some requirements for a tool they have de-
veloped as a result of their studies. Similarly, we conduct a study with professional developers,
and look for practices and activities involved in example usage. Based on our findings, we de-
sign a social media based code recommendation system. Our aim is not the design of a tool or
a recommendation system, but rather to investigate concerns involved in opportunistic software
development with the use of the system we designed.

14



3.3 Design-Based Research

Design-based research(DBR)[3][57] is a type of research methodology commonly used by re-
searchers in the Learning Sciences. It is one of several qualitative research methods. The
goal of DBR is to design, create and study a single theoretically-inspired system or environ-
ment, as it systematically changed through multiple iterations, while simultaneously testing
the validity of a dominant theory or generating new theories. The definition of DBR proposed
by Wang and Hannafin[56]: A systematic but flexible methodology aimed to improve educa-
tional practices through iterative analysis, design, development, and implementation, based
on collaboration among researchers and practitioners in real-world settings, and leading to
contextually-sensitive design principles and theories.

Anderson et al.[1] review the characteristics of DBR and analyze the five most cited DBR
articles from each year of this past decade. They illustrate the context, publications, and most
popular interventions utilized. They conclude that interest in DBR is increasing and their results
provide limited evidence for guarded optimism that the methodology is meeting its promised
benefits. Dede[16] discusses why DBR is both important and hard. He advocates that contrary
to traditional research methods, in DBR studies many variables are deliberately and appropri-
ately not controlled, the “treatment” may evolve considerably over time, and even the research
methodologies utilized may shift to fit the morphing intervention. Further, to aid with interpre-
tation under these difficult circumstances, in DBR large qualitative and quantitative datasets of
various types are often collected by many different participants, introducing substantial prob-
lems of alignment, coordination, and analysis.

Reeves et al.[44] employ design-based research to explore the various incentives for con-
ducting research on the impact of computing and other technologies in higher education, ex-
amine the social relevance of that research, and recommend DBR as a particularly appropriate
approach to a socially responsible inquiry. Barab et al.[4] designed the Quest Atlantis (QA)
project, a learning and teaching project that employs a multiuser, virtual environment to im-
merse children, ages 9–12, in educational tasks. It allows users at participating elementary
schools and after-school centers to travel through virtual spaces to perform educational activi-
ties, talk with other users and mentors, and build virtual personae. They studied the impact of
QA on learning, and showed that, when responding to personal narratives, students participat-
ing in QA offered character insights that were either deeper or better supported than did students
in equivalent conditions; additionally, elementary students who used QA demonstrated statisti-
cally significant learning over time in the areas of science, social studies and sense of academic
efficacy.

In our research, we follow the DBR guidelines: we use real-world practitioners, profes-
sional software developers, to form a design of a social media based recommendation system.
Based on that design, we conduct a study among professional developers investigating op-
portunistic software development, involving participant observations and interviews, in each
examining multiple dependent variables, and looking at multiple aspects of the design in prac-
tice.

15



3.4 Research Course

Figure 3.2: Research course

The research process can be divided into 2 phases, as shown in Figure 3.2. In phase I, we used
an online survey to gain insights on activities involved in example usage among professional
developers. We use our findings to design and implement, Example Overflow (EO), a code
recommendation tool to based on social media. The design decisions for EO take into account
the survey data of professional developers regarding example usage. In phase II, we use the
social media based code recommendation system we designed, Example Overflow, with quali-
tative data gathering tools: participant observations, and interviews, to investigate opportunistic
software development among professional developers.

3.4.1 Phase I: Example Usage Among Professional Developers Survey
To gain insights, we have conducted an online survey [42] among professional developers. The
survey (available online1) contained no mandatory questions and was anonymous. Each subject
was asked some professional details: years of experience as a developer, size of the company
they work for, and what technologies they are using in their work. Following were seven
questions regarding example usage, where we defined example usage as any use of an already
existing code in the development process. The survey questions and activities mentioned here
are based on [6]. The questions are:

• How often do you look for examples in your work? (All the time, Every few minutes,
Once an hour, Once a day, Once a week, Less than once a week, I do not use examples
in my work, or Other).

• For what kind of programming tasks do you use examples? (check all applicable options:
Tasks involved with unfamiliar or new technology (API, programming language, plat-
form, etc.), I have a set of specific tasks for which I use examples regularly, Complicated
tasks (lot’s of details and corner cases), Common tasks (popular API, standard opera-
tions), When starting a new task (new feature, new project, "hello world"), or Other).

• During what kind of activities do you use examples? (check all applicable options:
Learning, Implementation, Problem solving, Design, Comprehension, Self improvement,
Other).

1https://docs.google.com/spreadsheet/viewform?formkey=dFV2ZWhycGdFLUtjVVIyR1VMNUxhQnc6MQ#gid=0

16



Figure 3.3: Screen capture of part of the online survey

17



Figure 3.4: Professional developers survey: years of experience as a developer

• I am using examples in order to find... (check all applicable options: API usage, Fea-
ture implementation, Tool / framework / environment usage, Language syntax, Design
decision, Algorithm, Inspiration / alternative ideas, Feedback about my own ideas, Pro-
gramming techniques / coding conventions / style, Other).

• How many different activities do you think are involved in example usage? (choose a
number from a given list of 1-20+).

• When you use examples, which of the following activities do you perform? (check all
applicable options: Browse, Comment, Learn, Modify, Refactor, Run, Search, Share,
Test, Understand, Wrap, Write). For each option check one of the following:

– Yes, I do that

– I don’t do it, but I think it is important

– Now that you mention it, I should do it more

– Not relevant for example usage

• Do you use other activities not mentioned above? or have any additional comments?
(open ended question).

The survey was published online using Google Forms technology2. We have solicited pro-
fessional developers’ participations by posting invitation in social and professional networks,
such as LinkedIn3, Facebook4, and DZone5. In the period of 14 months over 480 forms were

2https://www.youtube.com/watch?v=IzgaUOW6GIs
3http://www.linkedin.com/
4https://www.facebook.com/
5http://www.dzone.com/

18



Table 3.1: How often do you look for examples in your work?
Frequency No. of participants

All the time, every few minutes 33
Once an hour 90
Once a day 178

Once a week 98
Less than once a week 40

I do not use examples in my work 0
Other 26

submitted, and 465 submitted forms with at least one question answered (apart from the per-
sonal details). In 46 of them, the last (open ended) question, regarding additional activities
used, was answered.

More than half of the survey participants have 7 years of experience or more (See Figure
3.4). Most of the participants, as it can be seen in Table 3.1, use examples at least once a day.

Our discussion regarding the survey is limited, as we use its result to derive the design and
design decisions for a social media based code recommendation tool (as described in chapter
4). This is out of the scope of this thesis, a thorough analysis will be presented elsewhere.

3.4.2 Phase II: User Study

User Study Design

We designed our user study with the purpose of examining the validity of our research ques-
tions while following the guidelines in [46]. With that in mind we have chosen the following
main use case: a professional developer is required to accomplish a set of coding tasks in an
unfamiliar domain while working in opportunistic development manner. Our use case is not
uncommon, on the contrary, web and mobile developers face this problem on a daily basis, as
new programming languages or frameworks emerge, and developers can’t master them all.

We decided to give programming tasks to our subjects to be accomplished in a predefined
time frame, and to divide our subjects into two groups: (1) developers who are limited to
searching in Example Overflow (but allowed to follow external links), and (2) developers who
are not limited to using a specific tool or to using example code at all. In order to allow
opportunistic programming we decided on a time frame for each task, but to avoid discouraging
developers from participating we have limited ourselves to total time frame of 1 hour (or less)
for the task solving phase.

Tasks

Based on the main use case and the planned time frame we designed 4 tasks for participants
to work on. The tasks are based on the jQuery domain, which we have chosen for Example
Overflow. We visited various programming forums, Q&A web sites and jQuery related groups
to look for common tasks a jQuery developer may be required to accomplish. In addition, we
have approached the jQuery community on Linkedin and asked for suggestion of tasks. We
have chosen the tasks while making sure they come from real world problems or questions of

19



real jQuery developers, with priority to common tasks, and tasks that are not related to each
other. Each task was solved by the author and measured for time in order to determine the time
frame. The determined time frame for each task factors for developers who are unfamiliar with
jQuery or JavaScript. The first three tasks were given 10 minutes and the fourth task 15 minutes
for completion.

Following is the task description as it was given to the participants:

Task 16 Write code that checks whether a user is leaving the current window (by closing
the tab/window, going to a different url, pressing back or forward in the browser). If so, before
leaving the window show a popup saying “Task 1 - Are you sure?”

Task 27 You are given with basic code that creates an unchecked checkbox and a submit
button. You need to complete the code that will check if the checkbox is checked before submis-
sion. If the checkbox is unchecked, pop up an alert message saying “Before this form is sent,
you must check the checkbox.”, and prevent the submission. Otherwise, pop up an alert saying
“form submitted”.

Task 38 You are given with code that creates 5 bubbles on the screen with characters in
them (D,G,O,O,!). The characters represent a game where the goal for a player is to line-up
the letters so that it says “GOOD!”. The game will allow the user to click on a bubble, thus
moving that letter to the beginning (the most left side). You need to complete the code in order
to make it work.

6This task was chosen from the top of the official jQuery forum sorted by the “Most Voted” questions.
7This task was chosen from a blog post listing code snippets for common tasks in jQuery

(http://www.joshuawinn.com/quick-jquery-code-snippets-for-common-tasks/).
8This task was chosen from a jQuery challenge (http://cfg.good.is/challenges/javascript-user-experience-with-

jquery).

20



Task 49 Create a text box that is able to auto suggest the names of a few major cities in the
world. For simplicity you should use the local variable “cities” as your source for city names.
Notice that the textbox needs to show only city names starting with the given input letters.

Developer Recruiting

We have recruited 10 professional software developers to participate voluntarily in the user
study. The participants were offered a token of appreciation for participation. We approached
professional developers with at least 2 years of experience, and for this reason students were
not considered for the user study. In fact the average years of experience among the participants
was 7.05.

Data Collection

The user study began with a brief general questionnaire, followed by a short JavaScript &
jQuery tutorial (all user study files are available online10). The tutorial includes 5 basic exam-
ples showing an HTML structure, JavaScript event, and a simple example of a single widget,
the DatePicker, from jQuery.

Before each task, each participant was required to read the task instructions. Then it was
followed by showing a working demo of the required feature and allowing time for questions
if the task was unclear. It was explained to the participant that there will be no option to ask
questions during the task and no ability to view the tutorial files.

The user study was both observed in real time and recorded, thus giving us the ability
to analyze how a developer searches for code examples, how many code examples will they
browse before refining the query, what parts of a code example and its surrounding context are
they looking at, and other important information. The recording was capturing the participants
screen in the exact way the participant saw the screen.

Nonetheless, capturing the screen and observing the participant is not enough, because we
wanted to know exactly what parts of the screen the participant was looking at, and whether he
or she are more interested in code examples or the surrounding context such as documentation,
Q&A text, or comments. To overcome this, as suggested in the gidelines[46], participants were
asked to use Think Aloud protocol[20], where they were asked to verbalize what were they
doing and on which parts of the screen they were looking at. The audio was also recorded as
part of the video capture of the screen.

During the observations field notes were taken, documenting the participants actions, as
follows: for each action we documented the time, the query used and the action itself. We also
wrote anything the participant may have said during the task, even though audio was recorded
as well. Note that we, the observers, refrained from talking during the task. Figures 3.5 and 3.6
show an example of a field note used to collect data during observation of participant 4. To keep
up with the participant, we would use abbreviations in our notes, i.e. instead of writing “the

9This task was chosen based on the official jQuery documentation.
10http://www.cs.tau.ac.il/~alexeyza/example/user_study_files.zip

21



participant uses Google to search for jquery element” we would write “google jquery element”.
In addition, the field notes were taken in Hebrew, the native language of the observer and of the
participants.

At the end of the user study, participants were interviewed, and asked to reflect on how
they worked during the tasks. The interview was recorded (audio) as well. Following are the
interview questions:

1. What do you think of this experiment?

2. Did you use any particular strategy for solving the tasks? For all tasks? Why?

3. Were you familiar with Stack Overflow prior to this user study? Do you use code exam-
ples in your work ? Why ? If yes, from what source?

4. What difficulties did you have when you searched for code examples?

5. How did you choose your query?

6. Did you refine your query while searching? In what cases? If so how? Why/Why not?

7. Why did you choose that code snippet (e.g. it was first? Better compared to others)?

8. If you compared several code snippets, please explain how you compare between 2 code
examples.

9. How many code snippets do you think you’ve examined (not browsed) in average before
choosing?

10. Was it easy or difficult for you to find the code snippet you needed? Why?

11. Did you use only the code snippet itself to accomplish the tasks (without additional sur-
rounding context such as comments, documentation, Q&A text) ? Why/Why not?

12. Would you like to add something that you did not mention? (share insights)

Research Participants

Of the 10 participants, 6 were male and 4 female. The average years of experience is 7.05. The
most popular programming language a participant is familiar with was Java with 8 out of 10
participants. Only 4 of the participants were familiar with JavaScript, and only 1 was familiar
with jQuery.

Participants were randomly assigned a group: (1) participants who were limited to search
for examples at Example Overflow (EO) only, but were allowed to follow any external link
from within the EO results. (2) participants who were not limited and were allowed to use
any search tool they wanted. Participants 1, 3, 5, 7, and 10 were assigned to group (1), while
participants 2,4,6,8, and 9 were assigned group (2). We have noticed that all the participants
from group (2) have used Google search.

In the interview when asked about example usage at work, all 10 participants have said they
were using code examples at work.

22



Study Limitations

Our user study was limited to professional developers (no novice developers) and focused on
opportunistic development in an unfamiliar domain. However, the participants had some vari-
ance with the programming languages they are familiar with, and their past experience. Four
out of ten participants were familiar with JavaScript, and one participant was familiar with
jQuery.

The interviews were conducted in Hebrew, the participants native language, and translated
to English by the author.

23



Figure 3.5: Form used to collect data during observation of participant 4, task 3

24



Figure 3.6: Form used to collect data during observation of participant 4, task 4

25



3.5 Qualitative Data Analysis
Qualitative data analysis [30] has several stages: (1) transcription of the data recorded, (2) or-
ganizing the data into easily retrievable sections, (3) familiarization with the data by reading
and re-reading the data, making memos and summaries, (4) reading the data and labeling seg-
ments, i.e. coding, and (5) identifying themes or emergent concepts, and engaging in re-coding
to develop more well defined categories.

We analyze the data gathered in the participant observations and interviews in 2 phases,
while following the analysis stages mentioned above. In phase I the qualitative data was tran-
scribed, organized in a single data file, and coded. At the coding stage, we identified several
concerns and micro-activities involved in example usage. In phase II we continued to ana-
lyze the data, identifying further concerns, micro-activities and the connection between them.
We have repeated phase II iteratively, involving the coding stage and the identifying themes
stage until we refined our findings. As stated in the qualitative analysis guidelines[46], one
of the most important ways to help confirm a qualitatively generated proposition is to ensure
the validity of the methods used to generate it. In the following we address the challenges in
maintaining objectivity in this research on how we address them.

3.5.1 Phase I: Coding
We began the initial analysis with forming a data analysis form (see Table 3.2). We replayed the
recordings of each participant, while looking at the field notes taken during the observations,
and filled the data analysis form. This required multiple replays as it was hard to capture
all the data with a single replay. The interviews were transcribed and all the data was saved
electronically in a single data file.

The user study (observation, interview) was conducted by a single researcher (the author
of this thesis), as part of our measures to ensure ensure that those being observed are not
constantly thinking about being observed[46]. This is to help ensure that the observed behavior
is “normal”. This might challenge the objectivity of the research findings by introducing bias,
or preconceptions. We address this with the following measures:

• The observations and interviews were recorded (audio,screen capture) and allow other
researchers to replay the recordings, thus preserving the raw data from being influenced
by bias or agenda.

• The field notes (observation and interview notes) were written in real-time during the user
study, before the focus of the research was determined. This ensured that the researcher
would interpret the data objectively.

• The analysis was conducted in iterations between the author and the research supervi-
sors: reviewing the results, raising questions and reservations and reexamining the study
recordings.

3.5.2 Phase II: Identifying Themes
In phase I we identified several concerns and micro-activities involved with example usage,
in phase II we focus on looking for supportive evidence, while refining and modifying the

26



Table 3.2: Initial data analysis example: table for phase I analysis of participant 4, task 3
Task 3 Data

All Queries used by participant jquery remove element ul, jquery remove
clicked element ui, jquery remove single

element UL, jquery append to ul
How many queries used? 4

How many results browsed (per query)? 1,2,5,1
How many results examined (per query)? 1,1,1,1

How many queries rephrased? 3
How many snippets browsed or examined

before rephrasing the first query?
1

How many examined (not browsed) before the
first copy/paste of a code example?

1

How many times viewed additional context? 3
How many times gave up on a code example

because it looked too long?
0

Was he/she able to find and copy/paste a
"good" code example?

no

If yes to above, what query and result rank was
used?

-

Actual time (max = 0:10:00) 0:10:00
Did he/she succeed in task (part 1 - move any

one of the bubbles to any side, i.e. left or
right)?

yes

Did he/she succeed in task (part 2 - move the
clicked bubble to the left most side)?

no

Tools used directly Google search (with built-in auto-complete)
Tools used indirectly stack overflow

Were the examples used as a reference only or
as copy/paste snippets?

code snippet

If used Google search, did rely on
auto-complete ?

yes

27



list of concerns and micro-activities. We differentiate this phase from phase I, because it is
repeated iteratively until we refined the list of concerns and micro-activities. The end result is
a proposition that insightfully and richly describes how developers mitigate concerns involved
in example usage.

We conducted this step in a similar manner to the analysis in phase I, we replayed the
recorded observations and interviews while looking on the field notes as well. Table 3.4 shows
the data analysis form used in phase II.

Analysis Example

We’ll use the field note of participant 4 from task 3 (see Figure 3.5) to show as an analysis
example. Note that this is an example of the analysis of the field note alone, and is only a partial
analysis that may miss some of the context. We applied a similar analysis to the observation
recordings and interviews and to give the full context needed for the analysis. Table 3.3 shows
the field note transcribed and translated to English. Table 3.4 shows an example analysis of the
raw data from Table 3.3.

28



Table 3.3: Data analysis example: transcribed data form of participant 4, task 3

0:00 Searches with Google the query “jquery remove element ui”

0:20 The result points him to a Stack Overflow question, participant looks on the ques-
tion and it’s title. Returns to Google.

0:50 Looks at his source code, to understand what needs to be done.

1:10 Thinks to himself what he wants to do.

1:25 Writes code manually based on a single keyword he saw in an example.

2:00 He receives an error, and returns to search in Google with query “jquery remove
clicked element ui”. The result brings him to Stack Overflow, and he examines the
code example there.

3:15 Tries to search with keywords based on a possible solution he has in mind, instead
of searching for the problem (keywords based on the task).

3:40 Plays with his own code just to make something work. Searches Google with
“jquery remove single element ui”. Says out-loud “There is some cryptic thing
here”. Copies the example without understanding the example code at all.

5:40 Looks at the his code (with the previously example embedded) and tries to under-
stand what is wrong.

6:49 Reads an accepted answer from a question on Stack Overflow. Says out-loud “It
looks complicated to me. I don’t understand the meaning of half of the things
here”.

8:00 Successfully able to remove UI elements (as part of the required task). Now tries
to understand how to add elements.

9:00 Wants to use the “append” keyword. Says out-loud while starting to search Google
- “I just made it up (the append keyword), can I have some confirmation here”.

9:25 Looks for information on the “append” keyword on Stack Overflow (by using
Google to search).

10:08 Able to move some elements on the screen (as required in the task), but it doesn’t
fully accomplish the task.

29



Table 3.4: Data analysis example: analysis of the data from Table 3.3
Time Raw Data Micro-activity

Identified
Concern(s)
mitigated

0:50 Looks at his code to
understand what needs

to be done.

Task comprehension Confidence in the
example

1:25 Writes code manually
based on a single

keyword from
example.

Diversity in using the
example

Confidence in the
example

3:15 Tries to search with
keywords based on a

possible solution.

Forming and refining
the query

Confidence in the
example

3:40 Forms a query based
on the task.

Forming and refining
the query

Lack of
knowledge

3:40 Copies the example
without understanding.

Diversity in using the
example

Confidence in the
example, Time

6:49 Reads an accepted
answer from a question

on Stack Overflow.

Reading additional
context

Confidence in the
example

30



Chapter 4

Example Overflow

In order to conduct our research, as part of designed based research, we designed and imple-
mented a Social Media based Code Recommendation System (SMCRS), Example Overflow,
that allowed us to test and analyze different design decisions of social media based recommen-
dation systems.

In this chapter we describe our design, design decisions and implementation of a SMCRS,
and our initial benchmark.

4.1 Social Media Based Recommendation System Design De-
cisions

In order to implement a crowd sourced software recommendation system, one needs to explic-
itly foresee the division of labor between the developer and the machine. The system should
facilitate the core practices[50] involved in Example Embedding[7][5] namely enable browsing
and comparing multiple code examples and reducing the developer’s context switch as elabo-
rated below.

4.1.1 Comparing Multiple Examples
Professional developers, participants of the example usage survey from section 3.4.1, reported
browsing multiple examples, comparing them side by side, and eventually choosing the exam-
ples most suitable for the developer’s needs (sometimes merging multiple examples).

Subject 435 answered “Compare a few different examples with one another to find the best”
in his answer to the open ended question “(When using examples) Do you use other activities
not mentioned above?”. Subject 444 answered “Sometimes I compare different code examples
to get a better understanding of the feature. Then I refactor and modify the code to fit my needs
and implement it in my own code, sometimes as part of a library (wrapping).” Subjects 316 and
467 mention “Compare” as one of the additional activities not mentioned in the survey. Subject
77 explains the advantage of multiple example authors “Get a general idea about technology
used in example; Multiple example authors can give you a more detailed explanation about
the technology used in example”. Subject 143 answered “Many times the results of a search
includes many examples that fit in terms of programming language and license, so choosing
the "best" one to try to reuse is a very important task. Searching is easy but I think making the

31



selection is one of the more difficult tasks. Maybe you could separate it from the more general
"browse" task or split the browse task into (1) search - deciding how to define the search query
- sometimes this is iterative and includes refinements (2) selection of most suitable example to
use among all relevant ones returned by the search”.

This also conforms to the literature suggesting that it is easy to extract the repetitive ex-
ample structure from a specific context, and to reuse the repetitive part for new tasks [39][26].
Traditional code search tools (e.g. Google Code Search, Krugle) allow searching for code,
where a developer inputs a query and then he or she is displayed with the search results con-
sisting of the filename or the first few lines of the source code. The developer is then forced
to click on each result, open it in a new view, inspect it separately and decide whether it is
the best example to be found. Using these tools, there is no way for the developer to compare
the current code example with the ones viewed previously or the one to be inspected next. We
believe the ideal solution should allow the developer to be able to browse and compare easily
and quickly through the top results. This will allow the developer to find the most suitable code
snippet or realize as soon as possible he or she is searching in the wrong direction. In order
to achieve this the developer should be able to compare the few top results in the same view,
without the need to change views in the working environment. This can be further enhanced
with visual comparison tools such as diff1.

4.1.2 Reducing Context Switching

We believe that modern software development and web search are part of the same activity,
thus should be conducted in the same context. The developer should not be in a different state-
of-mind when coding and when searching for code examples. The lack of IDE support for
built-in web search, forces developers to work directly with web search tools, such as Google

1http://en.wikipedia.org/wiki/Diff

32



search, but these tools aren’t intended solely for software developers, and create unnecessary
distractions.

Barzilay et al.[7] argue that example search is an integral part of modern software develop-
ment (Example Embedding Ecosystem [5]). Ponzanelli et al.[43] and Brandt et al. [10] support
this approach as well, by allowing developers to search for code examples from within the IDE.

We aim to allow the developer to find example code with minimal context switching as
possible, ideally without leaving the IDE.

4.2 Example Overflow
In this section we describe our implementation of a social media based code recommendation
system, Example Overflow. Example Overflow is a live system, and is currently deployed as a
public and free website2. Our implementation contains all code snippets that appear in accepted
jQuery related answers (more than 47,000 code snippets) on Stack Overflow3. jQuery4 is a
popular JavaScript library, initially released in 2006 and is ranked sixth in its popularity on
Stack Overflow (with over 330,000 related questions). We chose it as our case study since
we assume that Web developers would find it easier to adopt an example centric programming
approach. Our decision is also supported by the following: (1) Parnin and Truede [40] found
that Stack Overflow covers 84.4% of the jQuery API, and (2) Our study shows that 20% of
the jQuery related questions have a code snippet embedded in their accepted answer. Example
Overflow is developed as part of a comprehensive effort to create an Example Embedding
Ecosystem [5] – an example centric development method in which example related concerns
are weaved in the development process, software tools, practices, training, organization culture
and more.

4.2.1 Following Our Design Decisions
To support comparison of multiple code examples, when searching in Example Overflow the
developer is presented with the code of the 5 most suitable results. We base our decision on
[21], they conduct an eye tracking analysis for Google search users, and show that there is
a drop in viewing time and number of clicks at the 6/7 ranked results. They give a possible
explanation of the fact that typically only the first 5-6 links were visible without scrolling.
A sharp drop occurs after result 10, as ten results are displayed per page. Our preliminary
benchmark also supports this decision as can be seen in section 4.3. This allows the developer
to see all the code examples in the same view, where they are not isolated from each other,
compare them and choose the one that suites him or her best. If none of the results are suitable,
then automatically the next 5 most suitable code examples are displayed as well. This way the
developer will be presented with the minimum amount of code examples that are needed to find
the most suited one(s).

To support reduction of context switching, our design has a single search window, as can
be seen in Figure 4.1. The developer is presented with the most relevant search results, where
each result shows only the code snippet itself, thus allowing the developer to see all the code

2http://www.exampleoverflow.net/
3http://stackoverflow.com/
4http://jquery.com/

33



Figure 4.1: Example Overflow screenshot

snippets at the same view without opening new views. If the developer needs more context for
the code snippet, all he or she has to do is hover (without even clicking) over the example with
the mouse, and choose either "Question" or "Answer" to see that context inside the same view.

4.2.2 Populating the Repository

We use Stack Overflow’s API5 to request all the questions relevant to our current domain,
jQuery tagged questions6, where we filter out all the questions without an accepted answer. We
follow a conservative approach by choosing only accepted answers to ensure retrieval of high
quality results. The next step is to check whether each of these questions has a code snippet
inside the accepted answer. If so, that code snippet is extracted and saved to our database with
all the accompanying information: the question title, the question body, the answer body, the
code snippet itself, the user rating of the answer from Stack Overflow, the view count of the
question, the tags associated with the question and other relevant information (see Figure 4.2).
If that question is already in our database we only update the changed information. This process
can be executed as a scheduled task to allow us to keep the data in sync with the data at Stack
Overflow.

5https://api.stackexchange.com/
6http://stackoverflow.com/questions/tagged/jquery

34



Figure 4.2: Stack Overflow user interface analysis

35



4.2.3 Searching
Example Overflow uses keyword search based on the Apache Lucene [24] library, which in-
ternally uses the term frequency-inverse document frequency (tf-idf) weight [58]. In order for
Apache Lucene to search, one needs to define which parameters are to be analyzed and indexed.
For keyword search index we use both the code snippet and the additional metadata which ac-
companied the code snippet at Stack Overflow. This allows a developer to find code snippets
that may not contain the search query keyword, but the keyword appears in the contextual data
and indicates that it has been used in that context. Each code example is represented as a doc-
ument with several parts: title, tag, answer, question, code, and social metadata. We use the
following formula to calculate the score of each document representing a code example:

Sdoc = [WtitleStitle +WtagStag +WanswerSanswer +WquestionSquestion +WcodeScode]Smetadata

(4.1)
Where each Spart represents the individual score of the respective part of the document, and

Wpart represents the weights that may be chosen to tune the tool for the best results possible.
The weights would be computed based on a set of experiments, but for the initial benchmark
presented here, they were chosen heuristically to give higher priority to results with matching
keywords in the title or tag, over matches in the other parts, and are Wtitle = 4, Wtag = 4,
Wanswer = 1, Wquestion = 1, Wcode = 2.

4.3 Preliminary Benchmark
As a preliminary benchmark, we used a jQuery benchmark to compare the characteristics of
Example Overflow with other existing code recommendation systems, as elaborated below.

4.3.1 Benchmark Setup
We used the code assignments from the book jQuery in Action [8] to define a benchmark of ten
frequent programming tasks shown in Table 4.1. For each task we have manually decided on a
concise query to be used by a potential developer in order to find the desired code snippet. We
have used the same query in each of the following tools, and have examined the first 20 results
returned for each query.

We used the following existing tools in the evaluation: Google Search, Stack Overflow,
Krugle, and Koders. We also used Google Code Search in our preliminary benchmark, where
it had similar results to Krugle, but this service has been shut down by Google. We have not
included Strathcona [27], Blueprint [10] or PARSEWeb [53] in the benchmark, because they are
domain specific and would not work for the jQuery domain. We have not used SEAHawk[43]
as it was not available at the time of the benchmark.

4.3.2 Benchmark Methodology
For each query and each tool we have received a list of results. These results were manually
examined by the author (see section 4.3.4). We have used the actual code from the book jQuery
in Action as a point of reference.

36



Table 4.1: Search queries used for the evaluation benchmark
Data Point Search Query

Dynamic Dimension “jquery dynamic dimension”
Hover “jquery hover div”

Position “jquery position”
Rounded Corners “jquery rounded corner”

Draggable “jquery draggable”
Droppable “jquery droppable”

Autocomplete “jquery autocomplete from db”
Accordion “jquery accordion”
Date Picker “jquery datepicker”
Image Scale “jquery image scale effect”

Table 4.2: Search result comparison: rank of a suitable example at the returned search results.

Data Point
Code Repository Tools

Google
Search

Krugle Koders Stack
Overflow

Example
Overflow

Dynamic Dimension 4 Not found Not found 1 3
Hover 1 2 1 1 2

Position 3 Not found Not found 4 1
Rounded Corners 2 Not found 3 3 1

Draggable 1 Not found 3 2 1
Droppable 1 Not found 3 1 2

Autocomplete 1 Not found Not found 1 1
Accordion 1 Not found 12 3 1
Date Picker 1 Not found 3 1 1
Image Scale 2 Not found Not found Not found 3
Avg. Rank 1.7 19.1 9.7778 3.8 1.6

We examined the list of results retrieved from each tool, and determined whether it accom-
plished the programming task. If no matching result was found at the top 20 results, it was
marked as "not found" and received a rank of 21 for the average calculation.

4.3.3 Benchmark Results
Table 4.2 shows the rank location of suitable example code in the search results returned from
each tool.

It can be seen that our tool has overall the best results with an average result rank of 1.6,
where Google Search and Stack Overflow show similar results with 1.7 and 3.8 respectively, but
Krugle and Koders have poor results. The reason for the poor results may be that both of them
search for keywords to match the search query, without taking into account the context of the
found keyword or any additional metadata. On the other hand our tool gives different weights to
keywords based on their origin (code, title, tag, question, and answer). With this approach we
obtain better results, we present suitable examples at the top of the recommendations. Another

37



Table 4.3: Context switching comparison: the number of mouse clicks required by the devel-
oper to see the actual code example.

Data Point
Code Repository Tools

Google
Search

Krugle Koders Stack
Overflow

Example
Overflow

Dynamic Dimension 7 - - 1 0
Hover 1 3 1 1 0

Position 5 - - 7 0
Rounded Corners 3 - 5 5 0

Draggable 1 - 5 3 0
Droppable 1 - 5 2 0

Autocomplete 3 - - 1 0
Accordion 1 - 23 6 0
Date Picker 1 - 5 1 0
Image Scale 3 - - - 0

Avg. Mouse Clicks 2.6 3 7.3333 3 0

possible cause for the poor results might be because both Krugle and Koders are limited to open
source projects, where recent domains such as jQuery are not currently present. In addition
it can be seen that our tool didn’t require loading additional results (by scrolling down) and
managed to show a suitable code example in the top 5 results.

During our benchmark we have also examined the amount of view/context switches by
counting the number of mouse clicks required by the developer between the search request and
until the developer was able to see the actual suitable example code. It can be seen at Table
4.3 that our approach has an average of 0 mouse clicks hence it doesn’t require the developer
to switch views or open new views, but instead we immediately show the developer the actual
relevant code snippets. During our preliminary benchmark process we noticed that both Krugle
and Koders returned results which linked to actual project files, without guiding the developer to
the location of the required example code inside the project. This requires the developer to read
that file as a whole, and search for the possible match for his query, thus forcing the developer
to context switch from his actual task. In addition, most of their returned search results are only
partial and have context in other files of that project, which requires the developer to further
switch context and start looking at the other possibly relevant files.

4.3.4 Preliminary Benchmark Discussion and Limitations
Searching for code examples is possible using Stack Overflow directly. However Example
Overflow is better optimized for this use case, as our preliminary benchmark suggests. Al-
though our approach uses data taken from Stack Overflow, we show different results, since we
analyze the data differently and we use our own example-targeted search formula as shown in
(4.1).

The preliminary benchmark provided above is limited; we examined only a small subset of
programming tasks, with mostly popular tasks. The queries were phrased by the authors, who
also determined the relevance of the results.

38



Chapter 5

Investigating Opportunistic Software
Development Using Social Media
Recommendation System

Opportunistic software development has been studied before, [12, 11]. In our research we
focus on understanding software developers’ behavior and activities, when using social media
in opportunistic software development.

Following are the research questions, results of our study, and implications of each question.

5.1 Is Limiting Software Development in Example Driven
Manner Helpful?

In economics and law fields, paternalism[18] is the interference of a state or an individual with
a person or a group’s liberty or autonomy for their own good. For example the compulsory
wearing of seat-belts[13]. Based on knowledge worker studies[28] and knowledge worker
management guides[15], we see that autonomy is important to knowledge workers, however,
some efforts to improve knowledge worker performance may involve limiting his autonomy.
Can a similar approach be applied by limiting software development in example driven manner?
One would expect that limiting may hinder or slow developers, prevent them from using certain
resources. On the other hand, limiting developers in example driven manner, especially in
opportunistic development where time is of the essence, may benefit them: they’ll be more
focused with the task at hand, use more examples and create quick prototypes. In the following,
we discuss whether limiting professional developers in example driven manner is helpful, we
support our discussion with data from the user study (see section 3.4.2).

Research participants were assigned to one of two groups: (1) developers who are limited to
searching in Example Overflow (but allowed to follow external links), and (2) developers who
are not limited to using a specific tool or to using example code at all. Research participants of
group (1) were given a brief tutorial on how to use Example Overflow (EO), and how it displays
the search results. Specifically they were told that EO shows results as example code snippets.
Participants of group (2), were not told to use or search for code examples, and were free to use
any tool and search for anything in order to accomplish the programming tasks. This creates a
division between research participants who were in-fact limited in example driven manner, and

39



research participants who were not limited.
For each task, we have defined two parts needed to be accomplished in order for the task

to be considered solved. Prior to each task we explained to each participant how each task
was divided into parts and advised them to focus first on solving the first part, and only after
accomplishing it, they should move to solving the second part of the task.

Table 5.1 shows the score of each participant per task, based on how much he or she has
accomplished. For each part (out of 2) of a task we have given 0.5 points. Table 5.2 shows a
comparison of score per task between participants who were limited in example driven manner,
and participants who were not limited. We have noticed in the user study that participants were
actually able to find suitable code examples, but were having trouble embedding them correctly
into their code, thus failing to accomplish a task. We define the ability to find a suitable code
example, as the participant’s success to find a code example, and copy/paste it, thus indicating
he actually have chosen it. Furthermore, a code example was considered suitable if it only
required changing the variable names, and would accomplish the given task. Table 5.3 shows
the ability of each research participant to find a suitable example code per task, by marking
’yes’ as 1 and ’no’ as 0. Note that some participants were able to solve a task by themselves,
without using code examples, thus were marked as 0. Table 5.4 shows a comparison of ability to
find a suitable code example between participants who were limited in example driven manner,
and participants who were not limited.

We can see that limiting professional developers in example driven manner did not improve
their results.

40



Table 5.1: RQ1: Score of each research participant per task
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Task 1 0 1 0 1 0 1 0 1 1 1 0.6
Task 2 0 0 0 0 0 0 0 0.5 0.5 1 0.2
Task 3 0 0 1 0.5 0 0 0.5 0 1 1 0.4
Task 4 0.5 0 0 1 0 0 0 1 0.5 0 0.3

Overall Tasks 0.5 1 1 2.5 0 1 0.5 2.5 3 3 1.5

Table 5.2: RQ1: Comparison between the groups for average score per task
Avg. Avg. for Limited to EO Avg. for Non-limited

Task 1 0.6 0.2 1
Task 2 0.2 0.2 0.2
Task 3 0.4 0.5 0.3
Task 4 0.3 0.1 0.5

Overall Tasks 1.5 1 2

Table 5.3: RQ1: Ability of each participant to find a suitable example per task
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Task 1 1 1 0 1 0 1 0 1 1 1 0.7
Task 2 1 0 0 1 0 0 1 1 1 0 0.5
Task 3 0 0 1 0 0 0 1 0 1 1 0.4
Task 4 1 0 0 1 0 0 1 1 1 0 0.5

Overall Tasks 3 1 1 3 0 1 3 3 4 2 2.1

Table 5.4: RQ1: Comparison between the groups for ability of each participant to find a suitable
example per task

Avg. Avg. for Limited to EO Avg. for Non-limited
Task 1 0.7 0.4 1
Task 2 0.5 0.4 0.6
Task 3 0.4 0.6 0.2
Task 4 0.5 0.4 0.6

Overall Tasks 2.1 1.8 2.4

41



5.2 How Do Professional Developers Mitigate Concerns Re-
lated to Example Usage?

Services ,such as Stack Overflow, Github, Sourceforge, allow developers to access vast amount
of source code on-line. Furthermore, some of the available code is reviewed, debugged and
patched by other developers and may be considered as a high quality source for code snippets.
On the other hand, as shown in our survey (see Section 3.4.1), example usage is a popular prac-
tice among developers, yet developers have concerns involved with example usage. Developers
may hesitate to use or admit they use code examples. Some developers may say “If you use
copy and paste while you’re coding, you’re probably committing a design error”, while others
may go as far as advocate disabling copy and paste entirely1. While most developers won’t ban
example usage altogether, they have concerns involved with example usage.

We wish to identify the concerns professional developers have when using examples and
see how they mitigate them in opportunistic development.

5.2.1 Concerns
In the following, we outline professional developers’ concerns involved in opportunistic devel-
opment, as we identified them in our user study (see section 3.4.2).

Confidence in the example found (acceptance of result) - Developers have a measure of
confidence for each one of the results. Developers mention several factors that may influence
the measure of confidence (in no particular order):

• Source of example code - Developers examine the source of the example code, whether
it came from the official documentation, a popular Q&A website like Stack Overflow, a
developers blog, or other sources. When asked in the interview why a specific code snip-
pet was chosen, participant 4 has answered “If it came from an accepted answer on Stack
Overflow, someone has tested it and it is working, or if it comes from a documentation.
If there is a rating, and a proper forum with good comments then I’ll choose it”.

• Author of example code - In some cases developers find code examples published by
other developers whom they familiar with, or used his or her code examples before.
In our observations, participant 6, who was using Google search, has recognized the
author of one of the results and chosen to examine that code example over the others.
This is part of a more general trend where social media allows developers to “follow”
other developers, see their code and comments. Developers use it to learn from other
developers, and this process is supported by the software development communities like
GitHub and Stack Overflow.

• Simplicity and length of example - Developers tend to prioritize code examples based
on their simplicity and length. In our observations, we have noticed several cases where
developers skipped over code examples because of their length compared to the other
results. In other cases, this was the factor to determine in what order they would browse
or examine the results, where shorter and simpler code examples were examined first.

1http://www.secretgeek.net/copy_paste_dont_do_it.asp

42



Figure 5.1: “The first example seems irrelevant to me. It’s too complicated” - participant 7,
during task 1 of user study

During the tasks, participants have explicitly stated 6 times that they “give up” on a code
example because of it’s length. Participant 7, during task 1, said “The first example seems
irrelevant to me. It’s too complicated”. We can see evidence for this in the interviews
as well: participant 1 said “I was looking for short code snippets (it would be harder
to understand a long code example)”. Participant 5 said “I’ve chosen code snippets
that seemed easy. The tasks were easy, and it didn’t make sense to copy 50 lines of
code. In a familiar domain, I would prefer shorter code (examples) as well”. Participant
6 mentioned simplicity as well and said “Tried to choose the simpler one, or the one
more suitable for the case. Usually the simpler one (to understand)”. Participant 7 and
participant 9 mention in the interview simplicity and similarity to the task at hand as well.

• Similarity of content or keywords - Developers searching for code examples in an unfa-
miliar domain, look for similar keywords or similarity in content to their own task. In
the interview, when asked why a specific code snippet was chosen, participant 9 replied
“The one that seemed easier to understand, simpler. I’ve stayed away from the compli-
cated ones. If there was a explanation/story similar to mine, or if some of the code in the
example was similar to mine.”

• Rank of an example in search results - Developers rely on the recommendation system

43



or search tool ranking of the results, and give high priority to the top results. If it is a
tool they are familiar with and trust, then they may choose a highly ranked code exam-
ples that contradicts other factors mentioned here. We noticed in our observations that
developers who were using EO, were less lenient to trust the result ranking, until proved
to be trustworthy. We see evidence for this in the interviews as well: participant 3, who
used EO, mentions in the interview “I would have accomplished more if I was able to
search in Google - I would get better results. It (EO) was lacking query auto-completion
(feature), which would have encouraged me to see that others have searched this query
as well”. Participant 2 has said “In most cases I went for the first result. Greedy, the
first that seemed relevant”. Participant 8 explains Stack Overflow ranking importance -
“When looking at code examples in a question or answer on Stack Overflow, I go from
the second post and downwards, and try to choose based on comments by other people.
The higher the example on Stack Overflow the more chance there will be more answers
(comments by other people)”.

• Social rating - Developers rely on social ratings (including comments and reviews) of
other developers when searching for code examples. We see evidence for this in the
interviews: participant 4, participant 6, and participant 8 talk about using comments or
relying on reviews of other developers when choosing a code example.

• Comprehension of code - Developers used code examples which they do not understand,
in some cases it worked and in some cases it didn’t. But they would prefer a code example
they do understand (at least some of it). In the interview participants 1,5,6, and 9 mention
“understanding” and comprehension when asked why a specific code snippet was chosen.
Participant 5 said “I try/prefer to copy code I understand 80% of it”.

• Past experience - Developers rely on past experience when choosing a code example.
This is also true even if that code example is much less suitable that other examples re-
turned by the recommendation tool. We saw evidence for this with participant 10, the
only participant to have prior experience with jQuery: at tasks 1 and 2 his past experi-
ence has helped him to choose a suitable code example, but in task 4 he has chosen an
unnecessarily complicated example based on his past experience (while not choosing a
more suitable example that was shown to him), and failed to accomplish the task.

All the above factors go into account when a developer’s measure of confidence in a code ex-
ample is determined, while each developer may give different priorities to different factors.

Sense of responsibility - Participants have stated, regarding example usage, that in the wild
(at their job) they would have acted differently. They would have been more cautious with the
examples they copy/paste, and put more effort into understanding them. In some cases, they
would have used less examples. This behavior can also be interpreted as how the developer
sees the expectations of him by the organization, similar to the findings of Reimenschneider et
al.[45] regarding methodology acceptance. They investigate why individual developers accept
or resist methodologies deployed in order to improve software development processes. They
found that methodology adoption intentions are driven by: (1) the presence of an organizational
mandate to use the methodology, (2) the compatibility of the methodology with how develop-
ers perform their work, and (3) the opinions of developers’ coworkers and supervisors toward

44



using the methodology.

Lack of (domain) knowledge - In the user study the developers were faced with tasks in
an unfamiliar domain. Some developers tried to approach the tasks as if it was a familiar do-
main, they were trying to look for similarities in keywords, or code structure to other familiar
domains. We saw evidence for this when participants were trying to solve tasks without using
any code examples, and they were guessing the jQuery keywords based on similar keywords
in Java. Other participants quickly have realized that by using code examples they are able to
accomplish the tasks. We believe that lack of domain knowledge contributed to example usage:
some of the participants were looking for examples to learn the jQuery syntax or find the re-
quired keyword, while others were searching for a fully working example code to solve the task.

Time - The tasks were time-framed and participants had a limited time to accomplish each
task. Participants have stated that the lack of time has influenced the way they were searching
for code examples - “If I had more time, I would have read more context”. But does lack
of time discourages example usage or can it be a motivator for example usage ? Barzilay[6]
investigated motivation for example usage, and has identified three axes that affect example
usage motivation (a) the propreties of a task, (b) the development activity, and (c) software
engineering aspects, such as: speeding up development time and learning time. This means
time-framed tasks may have contributed to example usage.

45



5.3 What are the Micro-Activities Involved in Opportunistic
Development When Using Social Media Based Recom-
mendation System?

In the previous section we identified concerns involved in example usage with opportunistic
development. In this section, we characterize micro-activities, as identified in the user study
(see section 3.4.2), involved in example usage and how they are used by professional devel-
opers to mitigate the concerns. Figure 5.2 illustrates how each concern is mitigated by each
micro-activity.

Task comprehension - Developers try to comprehend the task at hand, the domain in-
volved, and the challenges they may be faced with. This affects the developer’s approach to
completing the task, and the other micro-activities. Participant 10 said he decided that the task
is considered “a simple task”, thus he was searching for a code example that was able to fully
accomplish the task. Code examples which may have had a partial solution to the task were
disqualified immediately and combining several code snippets was not an option. Task compre-
hension mitigates the lack of (domain) knowledge concern - by understanding the task at hand,
it’s requirements, and main keywords, developers are more motivated to look for examples.
In addition, task comprehension mitigates confidence in the example found concern, as it im-
proves comprehension of examples found, and allows for better comparison between different
examples and also between the example and the developer’s code or task.

Forming and refining the query - During the observations participants have given several
parameters taken into consideration when they are forming their queries: The task (keywords),
technical keywords, similar tasks from a different domain, Google’s auto-complete (collabo-
rative/social recommendations), keywords based on a possible solution, or keywords that they
believe other developers may have used to solve this task. Participants refined their query when
the top few results (the first batch of results) were not suitable to what they were searching,
or if their confidence in the results was low. In most cases, refinement of the query involved
addition, removal or changing of a single keyword. Participant 7, during task 1 when using
the query “jquery leave a page”, said “The first example seems irrelevant to me. It’s too com-
plicated. The second one as well, it is css. I think something in my search (query) was not
good.” The query was refined to “jquery leave a url”. By refining their query, developers try
to improve the confidence in the results to a certain satisfactory level, at which point they will
choose a suitable example and try it, either by copy/paste or by using it as a reference to write
their own code.

Browsing and examining results - Participants browsed over the results while trying to
identify if there are results that seems suitable, or acceptable to them. Participants looked at
the title, tags, author, source, and the length of the example. They would also examine the
social rating (if present), and look for presence of main keywords that may appear in their task.
During task 2, participant 4 has said “The first result seems promising, it has all the keywords
(from the query)”. This process doesn’t require developers to understand the example and is
mainly based on technical mechanisms, but browsing affects most of the factors determining
the confidence of the example found concern, thus able to mitigate this concern.

46



Figure 5.2: Overview diagram of concerns related to example usage and how they are mitigated
by each micro-activity

47



Table 5.5: Example usage: as a code snippet (copy/paste) vs. as a reference
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Task 1 c/p c/p ref c/p ref c/p c/p c/p c/p c/p
Task 2 c/p,ref ref ref ref ref c/p ref c/p c/p c/p
Task 3 ref c/p c/p c/p c/p ref c/p c/p c/p ref
Task 4 c/p c/p ref c/p c/p ref c/p c/p c/p c/p,ref

Results that have passed the browsing stage, are being examined more deeply and this time
the developer reads the actual code snippet or the surrounding context, including comments
and documentation.

Reading additional context - Developers read additional context (other than the code it-
self) in order to determine the example code relevance and their confidence in the example
they are examining. We have observed that some participants read additional context for every
example code browsed or examined, but others may do it only on rare occasions or not at all.
The amount of context viewed also is influenced by various factors. Some partipants have men-
tioned that in a familiar domain (in work) they may use much less additional context, whereas
in a non familiar domain (user study) they will opt to use it more.

Diversity in using the example - Developers may use a code example in various ways,
starting from copying and pasting it as is, to copying some of it, or to just using it as a refer-
ence while coding manually their solution. We have observed that a single developer may use
examples differently for similar tasks, while trying to mitigate some of the concerns. Table 5.5
shows in which way each participant used examples per task, whether he or she copy/pasted it
(partially or fully), or whether he just used it as a reference while manually writing the code.
Developers try to mitigate the sense of responsibility concern, by avoiding a direct copy/paste,
and either copying small part of the example or by using it as reference. Though this may be
more time consuming, this allows developers to learn from the example and gives them a higher
sense of responsibility.

Developers are required not only to find a suitable code example, but also to successfully
embed it into their existing code. In our study (see section 5.1), participants were able to find
and copy/paste a suitable example in 21 tasks (out of 40 combined), but only 13 of those were
successfully embedded.

5.3.1 Implications
By identifying and characterizing the concerns related to example usage and the micro-activities
used to mitigate them, we can improve example usage and support the example embedding
Eco-system[5]. Understanding the micro-activities performed by real practitioners, we (as tool
developers) can design tools and recommendation systems with better support for these micro-
activities, and help developers mitigate the concerns related to example usage.

48



5.4 When Searching for Code Examples, Do Developers Re-
fine Their Query or Continue Examining Additional Re-
sults?

Search and recommendation tools based on keyword search, such as Example Overflow and
Google search, are keyword dependent. A developer needs to use “the right” keywords in his
query in order to find the most suitable example. But what happens when the returned results
are irrelevant or not accepted by the developer? We want to examine whether developers who
search for examples would refine their query or continue reading additional results without
refining the query.

5.4.1 Implication
We hypothesize that when developers would use Example Overflow they would apply the fol-
lowing pattern: the developer would form a query, initiate a search, and examine all results
until choosing one of them without refining the query.

The implication from this research question may affect design of example code recom-
mendation systems, and improve example usage support tools and practices. Additionally, by
comparing between participants who are limited to searching with EO and participants who
are not limited, we can examine if there is a difference between their search pattern. If there
is a difference between the groups, this implies the design of search tools influences developer
behavior when searching for examples, and we (as tool developers) should reuse our design to
support the process of example searching better.

5.4.2 User Study Results
In order to examine this we have measured the number of different queries used per task by each
participant from the beginning of the task and until the task was accomplished or the time frame
was exceeded. We define query refinement as a any change of the original query, as opposed to
[34] who abstracted search actions into a set of mutually exclusive refinement classes, where
the refinement class of a query represents a user’s intent relative to his prior query. Table 5.6
shows the number of queries used per task by each participant. Table 5.7 shows the comparison
between participants who were using EO and participants who were allowed to use other tools.

We can see that the average number of queries used by a developer per task is 5.95. Partici-
pants who used EO had an average of 7.7 queries per task, while participants who used Google
search had an average of 4.2 queries per task. A possible cause for this can be a combination
of (1) participants were working in an unfamiliar domain and had difficulties forming their
queries, (2) Google search, as opposed to Example Overflow, has query auto-complete feature
based on similar popular queries.

49



Table 5.6: RQ4: Number of queries per task
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Task 1 7 1 8 1 14 1 9 4 3 1 4.9
Task 2 5 6 8 4 8 2 6 3 2 5 4.9
Task 3 4 3 10 4 9 6 3 4 3 5 5.1
Task 4 3 10 16 4 14 5 13 13 5 6 8.9

Overall Avg. 4.75 5 10.5 3.25 11.25 3.5 7.75 6 3.25 4.25 5.95

Table 5.7: RQ4: Comparison between the groups for number of queries per task
Avg. Avg. for EO Avg. for Other

Task 1 4.9 7.8 2
Task 2 4.9 6.4 3.4
Task 3 5.1 6.2 4
Task 4 8.9 10.4 7.4

Overall Avg. 5.95 7.7 4.2

50



5.5 How Many Code Examples are Examined Before Choos-
ing a Suitable Code Example?

When designing Example Overflow (EO), one of the design questions we were interested with
was - how many recommendations should be presented to a developer. Granka et al.[21] con-
duct an eye tracking analysis for Google search users, and show that there is a drop in viewing
time and number of clicks at the 6/7 ranked results, and a sharp drop occurs after result 10, as
ten results are displayed per page. We decided to follow their findings and display 5 results
in a page on EO, with pagination (see Section 4.2.1). However, [21] investigated “regular”
search with Google search without focusing on software developers, while we are interested
with code example search based on social media recommendation systems. In addition, we
want to differentiate between browsing and examining an example.

5.5.1 Implications
The implication from this research question may affect design of example code recommen-
dation systems, and improve example usage support tools and practices. If the number of
examined results is high, it supports the traditional “Google search” design, with 10 results per
page and pagination. But if the number of examined results is very low, it may imply that ex-
ample code recommendation tools should display less results, 1-2 recommendations, and focus
on supporting developer comprehension and providing example embedding support.

Based on our preliminary benchmark, we hypothesize that a developer examines 3 code
examples before choosing a suitable code example.

5.5.2 User Study Results
We distinguish between browsing and careful examination of the search results. Browsing
involves reading the title or the question, while careful examination involves delving into an
examination phase and may include understanding, learning, and comparing. A participant
would choose a suitable code example by copying and pasting any part of it or by copying it by
hand.

Table 5.8 shows the number of code examples examined by a participant per task before
choosing a suitable one. Table 5.9 shows a comparison between participants who were limited
to searching with EO and participants who were not limited. Note that some participant didn’t
examine any code examples during a task. This happened for two reasons: (1) they were unable
to find a suitable code example in the given time frame, (2) they wrote all their code without
using code examples at all. We marked these cases with as “-” in the table.

We can see the overall average number of code examples a developer would examine before
doing copy/paste is 2.02, and there was no significant difference between participants in either
group in the overall average. But, the participants who used EO show a larger variance in the
results between tasks.

51



Table 5.8: RQ5: Number of code examples examined before copy/paste
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Task 1 1 1 2 2 0 1 1 2 2 1 1.3
Task 2 6 4 - 1 3 2 0 1 1 1 2.37
Task 3 - 2 4 1 3 - 1 1 2 - 2
Task 4 1 5 - 1 1 1 4 7 1 1 2.44

Overall Avg. 2.67 3 3 1.25 1.75 1.33 2 2.75 1.5 1 2.02

Table 5.9: RQ5: Comparison between the groups for number of code examples examined
before copy/paste

Avg. Avg. for EO Avg. for Other
Task 1 1.3 1 1.6
Task 2 2.37 3.33 1.8
Task 3 2 2.667 1.5
Task 4 2.44 1.75 3

Overall Avg. 2.02 2.18 1.975

52



Table 5.10: RQ6: Number of times a participant viewed additional context per task
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.

Task 1 3 3 1 1 7 2 3 2 3 1 2.6
Task 2 0 5 1 5 0 3 2 2 2 1 2.1
Task 3 0 3 3 3 1 6 3 3 2 1 2.5
Task 4 3 10 5 3 0 6 6 11 13 3 6

Overall Avg. 1.5 5.25 2.5 3 2 4.25 3.5 4.5 5 1.5 3.3

5.6 When Searching for Code Examples, Do Developers Use
Additional Context ?

Nasehi et al.[37] conducted a qualitative analysis of the questions and answers posted to a
Stack Overflow. They found that the explanations accompanying examples are as important
as the examples themselves. We are interested to examine this further, whether the additional
context surrounding a code example is being used more than the example itself when used in
an opportunistic software development setting. In addition, we want to examine the design
decision of Example Overflow to hide the additional context, and display it “upon request” to
the developer.

5.6.1 Implications
We hypothesize that developers need additional context for code examples, and may even use
it more than the code snippet itself. If our hypothesis holds it implies that offering a rich-
verbose context in place, as an integral part of the code snippet, addresses a genuine need
of the developers. “Complementary” tools that are lacking this functionality are missing an
important requirement. If our hypothesis doesn’t hold, it should be further investigated whether
this additional context, though not used by many developers, is important - if so look for ways
to encourage developers to use it. If not used or not important - pragmatic tools such as EO
could justify “hiding” additional context and offer clean code / improve code browsing.

5.6.2 User Study Results
Table 5.10 shows the number of times the participant viewed additional context, such as com-
ments, documentation, body of question and answer (if it was from a Q&A website), per task.
Table 5.11 shows a comparison between participants who were limited to searching with EO
and participants who were not limited.

We can see that the average number of times a participant viewed additional context per
task was 3.3 for all participants, 2.2 for participants who were limited to searching with EO,
and 4.4 to participants who were not limited.

53



Table 5.11: RQ6: Comparison between the groups for number of times viewed additional
context

Avg. Avg. for EO Avg. for Other
Task 1 2.6 3 2.2
Task 2 2.1 0.8 3.4
Task 3 2.5 1.6 3.4
Task 4 6 3.4 8.6

Overall Avg. 3.3 2.2 4.4

54



Chapter 6

Summary

Social media will play an increasingly important role in software engineering research and
practice, as it raises new questions, new possibilities. In this thesis we examined the use of
social media based recommendations system in opportunistic software development. We did
not focus only on the technical side of the design, but rather on the human-machine interactions,
and the human behavior involved. Designing useful tools for developers requires to identify the
activities and sub-activities involved in example usage when using social media.

We found that professional software developers have concerns related to example usage,
concern that govern how and when examples are used. However, developers do not avoid ex-
ample usage altogether, but rather mitigate these concerns with micro-activities. By identifying
the concerns and micro-activities we have done the first step towards improving the design of
useful social media based tools and recommendation systems.

Furthermore, we found that being part of the Example Embedding Ecosystem is a double-
edged sword - tools and recommendation systems, such as Example Overflow, are not only
enabling the ecosystem, but are also being enabled by it. Without proper training, the de-
veloper is not able to critically evaluate the various examples, browse them and merge them.
Without proper practices, systems which are developed using examples extensively may end
up as Frankenstein code, and bugs may find their way in because the examples used were not
properly tested.

55



56



“The easy, conversational tone of good writing comes only on the eighth rewrite.”

Paul Graham

57



58



Bibliography

[1] Terry Anderson and Julie Shattuck. Design-based research a decade of progress in edu-
cation research? Educational Researcher, 41(1):16–25, 2012. 3.3

[2] Dejana Bajic and Kelly Lyons. Leveraging social media to gather user feedback for soft-
ware development. In Proceedings of the 2nd International Workshop on Web 2.0 for
Software Engineering, Web2SE ’11, pages 1–6, New York, NY, USA, 2011. ACM. 2.1

[3] Sasha Barab and Kurt Squire. Design-based research: Putting a stake in the ground.
Journal of the Learning Sciences, 13(1):1–14, 2004. 3.3

[4] Sasha Barab, Michael Thomas, Tyler Dodge, Robert Carteaux, and Hakan Tuzun. Making
learning fun: Quest atlantis, a game without guns. Educational Technology Research and
Development, 53(1):86–107, 2005. 3.3

[5] Ohad Barzilay. Example embedding. In Proceedings of the 10th SIGPLAN symposium
on New ideas, new paradigms, and reflections on programming and software, ONWARD
’11, pages 137–144, New York, NY, USA, 2011. ACM. 4.1, 4.1.2, 4.2, 5.3.1

[6] Ohad Barzilay. Example embedding: On the diversity of example usage in professional
software development. PhD thesis, Tel Aviv University, 2011. 1.1, 2.5, 3.4.1, 5.2.1

[7] Ohad Barzilay, Orit Hazzan, and Amiram Yehudai. Characterizing example embedding
as a software activity. In SUITE 2009: Proceedings of the 1st international workshop on
Search-Driven Development - Users, Infrastructure, Tools and Evaluation at ICSE ’09,
pages 9–12. IEEE Computer Society, 2009. 4.1, 4.1.2

[8] Bear Bibeault and Yehuda Katz. jQuery in Action. Manning Publications, 2nd edition,
2010. 4.3.1

[9] Gargi Bougie, Jamie Starke, Margaret-Anne Storey, and Daniel M. German. Towards un-
derstanding twitter use in software engineering: preliminary findings, ongoing challenges
and future questions. In Proceeding of the 2nd international workshop on Web 2.0 for
software engineering, Web2SE ’11, pages 31–36, New York, NY, USA, 2011. ACM. 2.1

[10] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-centric
programming: integrating web search into the development environment. In Proceedings
of the 28th international conference on Human factors in computing systems, CHI ’10,
pages 513–522, New York, NY, USA, 2010. ACM. 1.1, 2.3, 4.1.2, 4.3.1

59



[11] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. Two
studies of opportunistic programming: interleaving web foraging, learning, and writing
code. In Proceedings of the 27th international conference on Human factors in computing
systems, CHI ’09, pages 1589–1598, New York, NY, USA, 2009. ACM. 2.4, 5

[12] Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klemmer. Opportunistic pro-
gramming: how rapid ideation and prototyping occur in practice. In Proceedings of the
4th international workshop on End-user software engineering, WEUSE ’08, pages 1–5,
New York, NY, USA, 2008. ACM. 5

[13] Richard J Budd, Derek North, and Christopher Spencer. Understanding seat-belt use:
A test of bentler and speckart’s extension of the ’theory of reasoned action’. European
Journal of Social Psychology, 14(1):69–78, 1984. 1.2, 3.1, 5.1

[14] Abe Crystal and Beth Ellington. Task analysis and human-computer interaction: ap-
proaches, techniques, and levels of analysis. In AMCIS, page 391. Citeseer, 2004. 1.1,
2.4

[15] Thomas H Davenport. Thinking for a living: how to get better performances and results
from knowledge workers. Harvard Business Press, 2005. 1.2, 2.6, 3.1, 5.1

[16] Chris Dede. Why design-based research is both important and difficult. Educational
Technology, 45(1):5–8, 2005. 1.2, 3.3

[17] Norman Kent Denzin and Yvonna S. Lincoln. The Sage Handbook of Qualitative Re-
search. Sage Publications, 3rd edition, 2005. 3.2

[18] Gerald Dworkin. Paternalism. the Monist, 56(1):64–84, 1972. 1.2, 3.1, 5.1

[19] Jean-Marie Favre, Jacky Estublier, and Remy Sanlaville. Tool adoption issues in a very
large software company. In Proceedings of 3rd International Workshop on Adoption-
Centric Software Engineering (ACSE’03), Portland, Oregon, USA, pages 81–89, 2003.
2.6

[20] Marsha E. Fonteyn, Benjamin Kuipers, and Susan J. Grobe. A Description of Think Aloud
Method and Protocol Analysis. Qual Health Res, 3(4):430–441, November 1993. 3.4.2

[21] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of user behav-
ior in www search. In Proceedings of the 27th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, SIGIR ’04, pages 478–479,
New York, NY, USA, 2004. ACM. 1.1, 1.2, 3.1, 4.2.1, 5.5

[22] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and Chad M.
Cumby. A search engine for finding highly relevant applications. In ICSE (1), pages
475–484, 2010. 2.3

[23] Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel Uziel, Sivan Yogev, and
Shila Ofek-Koifman. Personalized recommendation of social software items based on
social relations. In Proceedings of the third ACM conference on Recommender systems,
RecSys ’09, pages 53–60, New York, NY, USA, 2009. ACM. 2.1

60



[24] Erik Hatcher, Otis Gospodnetic, and Mike McCandless. Lucene in Action. Manning, 2nd
revised edition. edition, 8 2010. 4.2.3

[25] Takashi Hattori. Wikigramming: a wiki-based training environment for programming.
In Proceedings of the 2nd International Workshop on Web 2.0 for Software Engineering,
Web2SE ’11, pages 7–12, New York, NY, USA, 2011. ACM. 2.1

[26] Douglas R. Hofstadter. Analogy as the core of cognition. In Dedre Gentner, Keith J.
Holyoak, and Boicho N. Kokinov, editors, The Analogical Mind: Perspectives from Cog-
nitive Science, pages 499–538. MIT Press/Bradford Books, 2001. 4.1.1

[27] Reid Holmes and Gail C. Murphy. Using structural context to recommend source code
examples. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 117–125. ACM, 2005. 2.3, 4.3.1

[28] Brian D Janz, Jason A Colquitt, and Raymond A Noe. Knowledge worker team effective-
ness: The role of autonomy, interdependence, team development, and contextual support
variables. Personnel psychology, 50(4):877–904, 1997. 1.2, 2.6, 3.1, 5.1

[29] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic study
of copy and paste programming practices in OOPL. In ISESE ’04: Proceedings of the
2004 International Symposium on Empirical Software Engineering, pages 83–92. IEEE
Computer Society, 2004. 2.4

[30] Anne Lacey and Donna Luff. Qualitative data analysis. Trent Focus Sheffield, 2001. 3.5

[31] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties of
novice programmers. SIGCSE Bull., 37:14–18, June 2005. 2.5

[32] Thomas D LaToza and Brad A Myers. Designing useful tools for developers. In Proceed-
ings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of programming
languages and tools, pages 45–50. ACM, 2011. 1.1, 2.4

[33] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a
study of developer work habits. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, pages 492–501. ACM, 2006. 2.4

[34] Tessa Lau and Eric Horvitz. Patterns of search: analyzing and modeling web query refine-
ment. COURSES AND LECTURES-INTERNATIONAL CENTRE FOR MECHANICAL
SCIENCES, pages 119–128, 1999. 5.4.2

[35] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann.
Design lessons from the fastest Q&A site in the west. In Proceedings of the 2011 annual
conference on Human factors in computing systems, CHI ’11, pages 2857–2866, New
York, NY, USA, 2011. ACM. 1.1, 2.2

[36] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending source code
examples via api call usages and documentation. In Proceedings of the 2nd International
Workshop on Recommendation Systems for Software Engineering, RSSE ’10, pages 21–
25, New York, NY, USA, 2010. ACM. 2.3

61



[37] S.M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code example?: A
study of programming q amp;a in stackoverflow. In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages 25–34, 2012. 2.5, 5.6

[38] L. R. Neal. A system for example-based programming. SIGCHI Bull., 20(SI):63–68,
1989. 2.5

[39] L Novik. Analogical transfer, problem similarity, and expertise. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14:510–520, 1988. 4.1.1

[40] Chris Parnin and Christoph Treude. Measuring api documentation on the web. In Proceed-
ings of the 2nd International Workshop on Web 2.0 for Software Engineering, Web2SE
’11, pages 25–30, New York, NY, USA, 2011. ACM. 2.1, 4.2

[41] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd doc-
umentation: Exploring the coverage and the dynamics of API discussions on Stack Over-
flow. Technical report, Georgia Institute of Technology, 2012. 2.2

[42] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Principles of survey research: part
1: turning lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26:16–18, November
2001. 3.4.1

[43] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging crowd knowledge for software
comprehension and development. In Software Maintenance and Reengineering (CSMR),
2013 17th European Conference on, pages 57–66, 2013. 1.1, 2.3, 4.1.2, 4.3.1

[44] Thomas C Reeves, Jan Herrington, and Ron Oliver. Design research: A socially re-
sponsible approach to instructional technology research in higher education. Journal of
Computing in Higher Education, 16(2):96–115, 2005. 3.3

[45] C.K. Riemenschneider, B.C. Hardgrave, and F.D. Davis. Explaining software developer
acceptance of methodologies: a comparison of five theoretical models. Software Engi-
neering, IEEE Transactions on, 28(12):1135–1145, 2002. 2.6, 5.2.1

[46] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.
Software Engineering, 25(4):557–572, 1999. 3.2, 3.4.2, 3.4.2, 3.5, 3.5.1

[47] Jonathan Sillito and Andrew Begel. App-directed learning: An exploratory study. 2.4

[48] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An examina-
tion of software engineering work practices. In CASCON ’97: Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative research, page 21. IBM
Press, 1997. 3.2

[49] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te Cheng. The im-
pact of social media on software engineering practices and tools. In Proceedings of the
FSE/SDP workshop on Future of software engineering research, FoSER ’10, pages 359–
364, New York, NY, USA, 2010. ACM. 1.1, 2.1

62



[50] J. Stylos and B.A. Myers. Mica: A web-search tool for finding api components and
examples. In Visual Languages and Human-Centric Computing, 2006. VL/HCC 2006.
IEEE Symposium on, pages 195 –202, 2006. 2.3, 4.1

[51] Ashish Sureka, Atul Goyal, and Ayushi Rastogi. Using social network analysis for mining
collaboration data in a defect tracking system for risk and vulnerability analysis. In Pro-
ceedings of the 4th India Software Engineering Conference, ISEC ’11, pages 195–204,
New York, NY, USA, 2011. ACM. 2.1

[52] James Surowiecki. The Wisdom of Crowds. Anchor, 2005. 2.1

[53] Suresh Thummalapenta and Tao Xie. Parseweb: a programmer assistant for reusing open
source code on the web. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ASE ’07, pages 204–213, New York, NY,
USA, 2007. ACM. 2.3, 4.3.1

[54] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers ask
and answer questions on the web? (nier track). In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 804–807, New York, NY, USA,
2011. ACM. 2.1, 2.2

[55] Christoph Treude, Fernando Figueira Filho, Brendan Cleary, and Margaret-Anne Storey.
Programming in a socially networked world: the evolution of the social programmer,
2012. 2.1

[56] Feng Wang and MichaelJ. Hannafin. Design-based research and technology-enhanced
learning environments. Educational Technology Research and Development, 53(4):5–23,
2005. 1.1, 3.3

[57] Feng Wang and MichaelJ. Hannafin. Design-based research and technology-enhanced
learning environments. Educational Technology Research and Development, 53(4):5–23,
2005. 3.3

[58] Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. Interpreting
tf-idf term weights as making relevance decisions. ACM Trans. Inf. Syst., 26:13:1–13:37,
June 2008. 1.1, 4.2.3

63



 
 

 אביב-אוניברסיטת תל
 ש ריימונד ובברלי סאקלר"הפקולטה למדעים מדויקים ע

 ש בלבטניק"ע ס למדעי המחשב"ביה
 
 
 
 
 

 על פיתוח תוכנה אופורטוניסטי
 בעזרת מערכת המלצה מבוססת מדיה חברתית

 

 
 
 
 
 

 (.M.Sc)חיבור זה הוגש כחלק מהדרישות לתואר מוסמך אוניברסיטה 
 ס למדעי המחשב"יהב, אביב-באוניברסיטת תל

 
 מאת

 
 זגלסקי לכסייא

 
 
 
 
 

 עמירם יהודאי' של פרופ והעבודה הוכנה בהדרכת
 
 
 
 
 
 
 

 ד"תשרי תשע



  



 
 תקציר

 
 

, תכנות שפות של הרף ללא משתנה עם סט מתמודדים תוכנה מפתחי
 של רב במספר להשתמש עשויים תוכנה פרויקטי. וטכנולוגיות פלטפורמות
 על. בכולן להתמקצע מסוגלים לא תוכנה שמפתחי בעוד, תפלטפורמו או טכנולוגיות

 ותשובה שאלה באתרי עזרה מחפשים תוכנה מפתחי אלה אתגרים על להתגבר מנת
 מקצב אתרים אלו נובעת של ההצלחה כי מאמינים אנו. Stack Overflow כגון

 על. מאחור אתרי ויקי והתיעוד הרשמי נגררים בעוד, בטכנולוגיה השינויים המהיר
 יוכלו ייתכן והמפתחים, ובמיוחד באתרי שאלה ותשובה, חברתית במדיה שימוש ידי

 של בצורה רק לא מגלם בתוכו ידע Stack Overflowהאתר . אלו פערים לצמצם
 כחלק נוהגים לשלב שמפתחי תוכנה, מקור גם כקוד אלא הערות או ותשובות שאלות

תית במחקר להנדסת החבר שתפקיד המדיה בעוד. שלהם התשובה או מהשאלה
זמינים המשתמשים  תוכנה מעט כלי כיום ישנם, תוכנה ובתעשיה יגדל משמעותית

 מדיה על המבוססות על קוד להמלצה ובפרט מעט מאוד מערכות, במדיה חברתית
 .החברתית

 המלצת קוד התומכת בשימוש מערכת לפתח במטרה שלנו המחקר את התחלנו
 לחקור מבלי זו מערכת לתכנן ניתן לא אבל .חברתית במדיה שימוש תוך בדוגמאות

האנושית בעת  ובעיקר מבלי ללמוד על ההתנהגות, בין האדם למכונה אינטראקציות
 לזהות יש למפתחי תוכנה שימושיים כלים על מנת לעצב, מכך יתרה. תוכנה פיתוח

. חברתית בעזרת מדיה בדוגמאות בשימוש הכרוכים פעילויות-ומיקרו החששות את
 לחקור אלא, להמלצת קוד מערכת או כלי של עיצוב לא היא, עם כך שלנו המטרה

 במערכת שימוש בעזרת אופורטוניסטי תוכנה בפיתוח המעורבים את החששות
 .שעיצבנו

 תמבוסס מחקר ובשיטת מחקר איכותני במתודולוגיית להשתמש בוחרים אנחנו
לא רק  שנובעות יותמורכבו עם להתמודד יכולה איכותני מחקר מתודולוגיית. עיצוב

 חשוב והכי, אדם ומכונה מאינטראקציות אלא, תוכנה בפיתוח טכניות מבעיות
 .תוכנה בפיתוח אנושית מהתנהגות

מהווה , מקצועיים מפתחים בקרב בנושא פעילויות בעת שימוש בדוגמאות סקר
 אנו. חברתית מדיה מבוססת המלצת קוד מערכתעבור  ולעיצוב לתכנון הבסיס את

 מערכת, Example Overflowומפתחים את  העיצוב שלנו החלטות אחר יםעוקב
 .קוד המלצת ומערכות חברתית המשלבת מדיה חיפוש והמלצת קוד

 עם וראיונות תצפיות הכולל, ניסוי ערכנו , Example Overflowבעזרת 
כי  המחקר מגלה. מראש שנקבעו משימות לפתור אשר התבקשו מקצועיים מפתחים
 חששות אשר, בדוגמאות לשימוש הקשורים ישנם חששות מקצועיים נהתוכ למפתחי
 משימוש לא נמנעים מפתחים, זאת עם. בדוגמאות ישתמשו הם ומתי איך קובעים

 .פעילויות-בעזרת מיקרו מנסים למזער חששות אלה אלא, בדוגמאות
 
 

 
 
 
 
 

 
 
 
 
 
 
 



 
 
 


	Introduction
	Background and Motivation
	Findings and Contributions
	Thesis Outline

	Related Work
	Social Media in Software Engineering
	Stack Overflow
	Code Recommendation Tools
	Study of Professional Developers
	Example Usage
	Concerns Related to Example Usage

	Methodology
	Research Questions
	Qualitative Research
	Design-Based Research
	Research Course
	Qualitative Data Analysis

	Example Overflow
	Social Media Based Recommendation System Design Decisions
	Example Overflow
	Preliminary Benchmark

	Investigating Opportunistic Software Development Using Social Media Recommendation System
	Is Limiting Software Development in Example Driven Manner Helpful?
	How Do Professional Developers Mitigate Concerns Related to Example Usage?
	What are the Micro-Activities Involved in Opportunistic Development When Using Social Media Based Recommendation System?
	When Searching for Code Examples, Do Developers Refine Their Query or Continue Examining Additional Results?
	How Many Code Examples are Examined Before Choosing a Suitable Code Example?
	When Searching for Code Examples, Do Developers Use Additional Context ?

	Summary

