
How Social and Communication Channels
Shape and Challenge a Participatory
Culture in Software Development

Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and Daniel M. German

Abstract—Software developers use many different communication tools and channels in their work. The diversity of these tools has

dramatically increased over the past decade and developers now have access to a wide range of socially enabled communication

channels and social media to support their activities. The availability of such social tools is leading to a participatory culture of software

development, where developers want to engage with, learn from, and co-create software with other developers. However, the interplay

of these social channels, as well as the opportunities and challenges they may create when used together within this participatory

development culture are not yet well understood. In this paper, we report on a large-scale survey conducted with 1,449 GitHub users.

We discuss the channels these developers find essential to their work and gain an understanding of the challenges they face using

them. Our findings lay the empirical foundation for providing recommendations to developers and tool designers on how to use and

improve tools for software developers.

Index Terms—Participatory culture, communication, social media, CSCW, software engineering

Ç

1 INTRODUCTION

SOFTWARE development has transitioned from a predomi-
nantly solo activity of developing standalone programs,

to a highly distributed and collaborative approach that
depends on or contributes to large and complex software
ecosystems. Many developers now contribute to multiple
projects, and as a result, project boundaries blur, not just in
terms of their architecture and how they are used, but also
in terms of how they are authored. Developers want to
engage with, learn from, and co-create with other deve-
lopers, forming a participatory culture [1] within many
development-related communities of practice [2]. Many
developers not only care about the code they need to write,
but also about the skills they acquire [3], the contributions
they make, and the connections they establish with other
developers. These activities, in turn, lead to more collabora-
tive software development opportunities.

To support developers’ collaboration and communication
needs, modern development tools are often integrated with
or supplemented by communication channels and social
media [4] (e.g., email, chat, or microblogging services). The
rich and varied ecosystems of tools that developers use help
them discover important technological trends, co-create
with other developers, and learn new skills. Furthermore,

these social tools foster creativity, promote engagement, and
encourage participation in development projects. We see
that the collaborative and participatory nature of software
development continues to evolve, shape, and be shaped by
communication channels that are used by development-
related communities of practice [5]. We use the general term
communication channel to refer to traditional communication
channels (e.g., telephone, in-person interactions) as well as
social features that may be standalone or integrated with
other development tools (e.g., email, chat, and forums).

Within a community of practice, software is the combina-
tion of externalized knowledge (e.g., code, documentation,
history of activities) as well as the tacit knowledge that
resides in community members’ heads (e.g., experience of
when to use an API, or design constraints that are not writ-
ten down). Communication channels and development
tools support developers in forming and sharing both exter-
nalized and tacit knowledge in a highly collaborative man-
ner. However, not much is known about the impact this
participatory culture may have on software development
practices, velocity, and software quality.

In this paper, we investigate how the choice of communica-
tion channels shapes developers’ activities within a participa-
tory culture of development, as well as explore the challenges
they encounter. We report on a large-scale survey with devel-
opers that contribute to either collaborative or community-
baseddevelopment projects on the popular GitHub code host-
ing site.Wewanted touncover the demographics of the devel-
opers participating in this community, and we aimed to
understand what channels and tools these developers use to
support learning, discovery, and collaboration with others.
Our survey revealed the communication channels these
developers find essential to their work, and we gained an

� M.-A. Storey, A. Zagalsky, L. Singer, and D.M. German are with the
University of Victoria, Victoria, BC V8P 5C2, Canada. E-mail: {mstorey,
alexeyza, lsinger, dmg}@uvic.ca.

� F. Figueira Filho is with Universidade Federal do Rio Grande do Norte,
Natal 59078-970, Brazil. E-mail: fernando@dimap.ufrn.br.

Manuscript received 17 July 2015; revised 22 May 2016; accepted 1 June 2016.
Date of publication 22 June 2016; date of current version 21 Feb. 2017.
Recommended for acceptance by H. Sharp.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2584053

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017 185

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

understanding of the challenges they face. These insights have
led to several recommendations on how to use and improve
communication and social tools for developers. Our work
investigates the following research questions:

RQ1 Who is the social programmer that participates in these
communities?

RQ2 What communication channels do these developers use
to support development activities?

RQ3 What communication channels are the most impor-
tant to developers and why?

RQ4 What challenges do developers face using an ecosystem
of communication channels to support their activities?

In previous work [6] we briefly described the first itera-
tion of our survey (conducted in 2013) with some initial
high-level results. This paper describes our survey in detail
and provides in-depth analyses of the results from two
deployments of the survey, conducted at the end of 2013
and again at the end of 2014. This work has formed an initial
descriptive theory of the role communication channels play
in supporting software development activities within a par-
ticipatory development ecosystem.

2 BACKGROUND

We begin with an overview of communities of practice and
communication channels in software development, illustrat-
ing the interplay between them. The ongoing formation and
evolution of these channels brings numerous challenges,
both to the individual software developer and to the com-
munity as a whole.

2.1 Communities of Practice in Software
Development

Communities of practice are groups of people connected by
the similarity of their activities [2]. Such communities can
be found in many domains, including software develop-
ment. Community members do not have to be spatially or
socially connected, but they solve similar problems and
learn from one another through processes like apprentice-
ship or mentoring. Members advance through a process
called legitimate peripheral participation: novices watch
passively and then take on peripheral activities that are not
vital, but nevertheless provide value to the community.

For example, in open source development, a potential
contributor may start by only reading discussions and
reporting defects. Over time, these contributors learn com-
munity conventions and move closer to the core group of
experts. Developers may start fixing bugs and progress to
the point where they can add their own features. They might
gain commit rights, and at some point become involved in
strategic project decisions. This phenomenon has also been
observed by Crowston et al. [7] and Pham et al. [8].

We see that developers consider themselves to be part of
a broader community of like-minded individuals that learn
from and teach one another. In open source projects, profes-
sionals and hobbyists contribute to the same projects and
interact in the same communities—some companies that
rely on open source projects may have their own staff con-
tribute to them.

Since software development lends itself to distributed or
remote work—collaborators need not be in the same office,

city, or time zone [9]—developer communities arise on a
global scale and are often connected through tools that
incorporate social aspects to help developers make
contact with and learn from each other. In a sense, socially
enabled tools andmedia can be considered catalysts to the for-
mation of global, virtual software development communities
of practice.

2.2 The Importance of Media in Software
Development

When we think of software development tools, our first
thoughts often concern development environments, debug-
gers, source code forges, version control systems, and bug
trackers. But as Naur [10] emphasizes, software is much
more than the code being developed. Software also involves
the immediate knowledge in developers’ minds and the
documentation accompanying the code. Thus, other tools
that play an essential role in collaborative development
include project management tools and communication
channels such as mailing lists [11], micro-blogging serv-
ices [12] and chat [13], [14]. These tools support knowledge
management activities that are central to the success and
longevity of large software projects.

Naur also argues that programmer knowledge tran-
scends documentation in three primary ways: it helps relate
the software back to the real world, it helps explain why
each part of the software is what it is, and lastly, it allows
for modification of the software while maintaining a map-
ping to real-world aspects. Furthermore, Naur notes that
certain software development activities (e.g., maintenance
and continued support) are dependent on knowledge which
is distributed among the members of the development
group. Thus, in this paper, we look at software development
as an activity that creates two types of knowledge—tacit
and externalized—and we explore how developers use
media to communicate and share this information.

Likewise, Scacchi’s open source studies refer to the im-
portance of “software informalisms”, which he says are
“information resources and artifacts that participants use to
describe, proscribe, or prescribe what’s happening in a
OSSD project.” [15] Such informal narratives are captured
and related in amyriad of onlineWeb-based communication
artifacts and documentation resources (such as emails, blogs,
wikis, IRC). Together, these resources comprise a distributed
knowledge base that continually evolves as participants gain
knowledge about the systems they develop and use.

Media—i.e., development tools and communication chan-
nels—play a critical role in how externalized and tacit knowl-
edge is formed, shared, manipulated, and captured. These
tools and channels become an extension of the program-
mer [16], helping them extend and distribute their cognition
to develop, refine, and share knowledge. We previously [6]
reported on an in-depth survey of how tools and channels
play an essential role in communicating knowledge that is:

� captured in developers’ heads;
� externalized in tools;
� stored in community knowledge resources; or
� captured in developer networks.

Fig. 1 provides a historical perspective of how different
tools support the communication of these types of

186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

knowledge during software development. This simplified
view—developed in our previous research—reveals how
development tools and media have evolved from a non-
digital form to a digital form, eventually becoming infused
with social features. We see a recent trend towards the use
of social media channels and the embedding of social
features in development tools. Other researchers have also
noted an increase in the number of tools (in particular,
social tools) adopted by software developers [17], [18], [19].

In Fig. 1, we distinguish tools that support the communi-
cation and capture of knowledge in developers’ heads from
knowledge that is externalized through development arti-
facts and tools, and from knowledge that is embedded
within community resources or social networks. The inclu-
sion of more social aspects over time has led to an increase
of knowledge that is stored in community resources and
social networks. Our previous work [6] provided an over-
view of the research that has been conducted on social chan-
nels in software development. Giuffrida and Dittrich [20]
elaborated on this topic further by providing a systematic
mapping study on research that has investigated the use of
social software in global software development.

2.3 The Rise of the Social Programmer

Developers are becoming increasingly social and rely on their
social networks to keep up to date, to find projects to contrib-
ute to, and to find others to collaboratewith. They rely on tools
to help them participate effectively in these social networks,
although sometimes they also face hurdles in participating
and staying up to date. The rise of the social programmer [6],
[21] and the ways that communities of developers make use

of increasingly social tools have led to the emergence of a
highly participatory culture of software development. Jen-
kins [1] defines a participatory culture as one that:

� lowers barriers to participation;
� provides strong support for sharing;
� facilitates informal mentorship;
� has its members believe their contributions matter;

and
� values social connections and what others think.

While this framework helps us better understand how
developers work in this new context, we do not have a good
understanding of how particular combinations of channels
and tools shape and are shaped by communities of develop-
ers. We also do not adequately understand which channels
support which knowledge activities, and whether individ-
ual developers face challenges using such a complex ecosys-
tem of tools while contributing to potentially many different
communities and projects. Achieving a deeper understand-
ing of how media shape this participatory culture will guide
tool designers and provide recommendations for how indi-
vidual developers, teams, and communities should use the
media effectively. In the next section, we describe a large-
scale survey we designed to investigate this topic.

3 METHODOLOGY: THE DEVELOPER SURVEY

Our overarching research goal was to understand how com-
munication channels and social media support a broad set of
knowledge activities within a participatory culture of soft-
ware development. To help realize this goal, we designed
and conducted a survey to learn how developers use tools to

Fig. 1. Development communication channels over time and how they support the transfer of different kinds of developer knowledge.

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 187

support their knowledge activities, what media channels are
important to them, andwhat challenges they face.

We deployed the same survey during two different time
periods: at the end of 2013 and at the end of 2014. For both
deployments, we downloaded account data for the most
recently active GitHub users with public email addresses.
To indicate activity, we used the 25 event types defined by
the GitHub API v3.1 Most of these events concern develop-
ment tasks such as committing code, creating repositories,
and creating issues, but there are also more general events
related to following users and watching repositories. To
find developers for our survey, we used the GitHub
Archive2 to query public events happening on GitHub.
Therefore, our findings are limited to this population. We
sorted events by their timestamp and excluded users who
did not have public email addresses at the time we sent our
invitation emails. For the second iteration, we also ignored
users we had emailed in the first iteration. We focused on
this population of developers because GitHub is currently
the most widely used social coding platform by developers
who contribute to one or more collaborative development
projects in an open manner.3

We emailed our survey to 7,000 activeGitHubusers during
November and December of 2013, and to 2,000 active GitHub
users in December of 2014. 1,492/332 developers responded
to the two instances of the survey in 2013 and 2014, respec-
tively (21 and 16 percent response rates). The only statistical
difference between the two deployments was an increase in
the number of women (from 3.5 to 6.3 percent, r ¼ 0:042). We
combined the responses from both surveys and ignored
incomplete ones, resulting in 1,449 survey responses.

Our survey followed several iterations of design and
was based on an in-depth review of the existing literature
on software engineering as well as related literature on
knowledge work. In the survey,4 we first inquired about
the developers’ demographics. We then inquired about
communication channel use for a set of 11 development
activities. The set of activities was informed by our review
of the literature that examines tool and communication
channel use by software developers [6]. These activities,

which go beyond finer grained development and project
management activities, were as follows:

� STAY UP TO DATE about technologies, practices,
and tools for software development

� FIND ANSWERS to technical questions
� LEARN and improve skills
� DISCOVER interesting developers
� CONNECTwith interesting developers
� GET andGIVE FEEDBACK
� PUBLISH development activities
� WATCH other developers’ activities
� DISPLAYmy SKILLS/ACCOMPLISHMENTS
� ASSESS other developers
� COORDINATE with other developers when partici-

pating on projects

The survey questions relating to activities all followed
the same form: we used a matrix of options that the survey
respondents could select from to indicate that an item was
used for the corresponding activity (see Fig. 2 for an exam-
ple question about activity and channel use). The social
channels specified in the matrix were determined from our
own knowledge as developers, as well as through feedback
from fellow developers. The channels were refined using
the research literature and through piloted surveys. We
included an “Other” option to elicit channels we did not
consider. We asked developers to rank the most important
tools and channels they used to support development
activities and explain why those tools were important.

We also aimed to understand what challenges develop-
ers face using social channels, probing about privacy, inter-
ruptions, and feeling overwhelmed, as these were concerns
that came up in earlier studies conducted with adopters
and non-adopters of social media (e.g., Singer et al. [12]).

The survey instrument is one of the contributions of this
paper and its source code can be found in a repository on
GitHub.5 This will allow others to replicate our survey and
build upon our work. We describe our analysis approach as
we present each research question, and refer to the limita-
tions of the study in the Discussion section of the paper.

In the following sections, we present the results from
our analysis of the survey responses to answer our four
research questions.

Fig. 2. The channel matrix designed for the survey.

1. https://developer.github.com/v3/activity/events/types/
2. https://www.githubarchive.org
3. https://octoverse.github.com/
4. http://thechiselgroup.org/2013/11/19/how-do-you-develop-

software/ 5. https://github.com/thechiselgroup/devsurvey

188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

4 SOCIAL PROGRAMMER DEMOGRAPHICS

For our first research question (RQ1), we wished to charac-
terize the modern social programmer that openly participates
on projects hosted on the GitHub social coding platform.

We asked our survey respondents to provide demo-
graphic information such as gender, age, geographical loca-
tion, programming experience, the programming languages
they use, the number of projects they participate in, whether
they program professionally, and the size of the project
teams they have worked with. The answers to these ques-
tions are summarized in Figs. 3, 4, and 5.

Geographic Location: Our survey was successful in
attracting respondents from all over the world: 43.4 percent
from North America, 24.2 percent from Asia, 21.1 percent
from Europe, 7.1 percent from South or Central America,
and 4.1 percent from Africa or Oceania. It is notable that
there were more respondents from Asia than Europe: 143
respondents originated in China, making it the second most
frequent country of origin after the United States, which had
547 respondents. Canadawas thirdwith 90 respondents.

Gender: The overwhelming majority of our respondents
identified as male—only 3.9 percent said they were female.
However, it is possible that other respondents were female
but did not wish to be identified as such.6

Age: 56.7 percent of respondents said they were between
23 and 32 years of age (so-called millennials), representing
the largest age group in our survey and showing a strong
bias towards relatively young developers. In fact, 77.9 per-
cent said they were 32 or younger. 3.7 percent were older
than 45 and only 0.4 percent were older than 60.

Team Size: Team size was slightly more evenly dis-
tributed. Only 1.8 percent of respondents said they had
worked in teams of more than 50 members. We found a
slight bias towards smaller teams, with 61.5 percent hav-
ing worked on teams of five members or less and 16.2
percent saying they had only worked on projects where
they were the sole member.

Programming Experience: In terms of experience,
responses varied. Only 5.1 percent had 1 year of experience
or less. 33.5 percent had worked as a developer for 2 to 5
years, 29.1 percent for 5 to 10 years, 24.4 percent for 10 to 20
years, and only 7.6 percent for more than 20 years.

Number of Projects: The majority of our survey respond-
ents (88.9 percent) had worked on 5 projects or less
and most had experience working on 2 (21.5 percent), 3
(27.7 percent), or 4 (15.7 percent) projects.

Professionalism: Most respondents were professional
software developers (78 percent). 54 percent considered
themselves open source developers and 51 percent worked
on pet projects.

Programming Languages: Fig. 5 shows a word cloud of
programming languages used by the participants, while
Table 1 shows the most popular languages. The three most
popular languages included JavaScript (61.9 percent), Python
(44.6 percent), and Java (41.5 percent). This may indicate that
at least 60 percent of our respondents develop for theWeb.

Table 2 shows the results of testing independence between
the different factors surveyed. Our respondents provided
three types of answers: categorical (including dichotomous),
such as whether the respondent was a professional program-
mer; ordinal, such as how concerned they were about their
privacy; and numeric, such as the number of different chan-
nels used. This forced us to use different tests of indepen-
dence for each pair of factors: for pairs of categorical factors,
we used chi-square; for pairs of one categorical and one ordi-
nal or numeric, we used Kruskall-Wallis; and for pairs of two
ordinal or numeric, we used Spearman correlations.We high-
light some of the differences below.

Regarding age, we found a moderate positive correlation
between age and programming experience (r ¼ 0:56,
p � 0:001); also, older programmers are more likely to
work on professional projects (H=160.63, df=1, p � 0:001)
and less likely to work on open source projects (H=34.87,
df=1, p � 0:001). However, there is almost no correlation
between age and team size (r ¼ 0:09, p ¼ 0:001).

Regarding gender, we found that female programmers
are less likely to have professional experience (H=21.55,
df=4, p � 0:001) and pet projects (H=10.6, df=2, f ¼ 0:08,
p ¼ 0:05), and they work on fewer projects than their male
counterparts (H=14.79, df=6, p ¼ 0:022).

People working in larger teams are more likely to be pro-
fessional programmers (H=65.05, df=1, p � 0:001). There is
very little (if any) positive correlation with both the number
of projects they are members of (r ¼ 0:18, p � 0:001) and
the different channels they use (r ¼ 0:18, p � 0:001).

When a person is a professional programmer, it is less
likely they will work on open source projects (H=102.6,
df=1, f ¼ 0:27). However, a person that has a pet project is
more likely to also be involved in open source projects
(H=177.4, df=1, f ¼ 0:35).

Regarding the different number of channels a person
uses, there is very little (if any) positive correlation with
team size (r ¼ 0:18, p � 0:001) and the number of projects
they belong to (r ¼ 0:18, p � 0:001).

5 COMMUNICATION CHANNELS DEVELOPERS USE

TO SUPPORT DEVELOPMENT ACTIVITIES

To answer our second question (RQ2), we asked the
respondents to indicate which channels they use for a vari-
ety of software development activities. As mentioned, these
activities were determined through a literature review and
from our previous research.

On average, developers indicated they use 11.7 channels
across all activities, with a median of 12 and quartiles of
½9; 14� (see Fig. 6 for the distribution of channels used by sur-
vey respondents).

Fig. 3. Demographics of the programmers that answered the survey
(those recently active on GitHub with public activity).

6. http://meta.stackoverflow.com/a/281304

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 189

Table 4 shows an overview of the channels developers
said they use to support different activities. In this table, we
grouped the channels according to analog, digital, and social
+digital (see our discussion for Fig. 1). This table highlights
that there appears to be more reliance on communication
channels that support social features. For each activity, we
generated a radar graph showing the distribution of
responses about channel use (see the companion website7).

For each activity, we also asked developers to indicate
other channels they might use that were not listed in the
survey (see Table 3). There are a number of channels that
we did not specify or did not specify clearly enough in our
survey, including events and meetups, software documen-
tation, and personal blogs and Websites. The respondents
also mentioned research papers, headhunters, recruiting
Websites, and conference calls as important ways of sup-
porting their activities.

Although Table 4 paints a high-level picture of which
channels tend to support a set of development activities, a
limitation with this data is that we only know that develop-
ers use the selected channels for supporting a given activ-
ity—we don’t know how important these channels are.
Consequently, we asked the respondents to tell us which
three channels are the most important across all activities
and why. We report these results in the next section.

6 SOFTWARE DEVELOPERS’ MOST IMPORTANT

COMMUNICATION CHANNELS

Beyond mapping the channels developers use as part of
their software development activities, it is also important
to understand why these channels are important to them.
For this purpose, as well as to answer RQ3, we asked devel-
opers to indicate the top three channels that are important
to them and why each one is important. Fig. 7 shows the
number of responses given per channel.

In the following, we provide more insights into why cer-
tain channels were perceived as important to the developer
respondents. We also provide quotes from specific partici-
pants, indicated by P#.

Code hosting sites allow for better team collaboration,
group awareness, and project coordination. The ability to
share one’s code on the Web has lowered the barriers to
entry by making source code easily accessible: “All levels of
users and employees know how to use it: The hard-core developers
use the command-line-based tools, and the ‘end users’ just use the
Web interface, without feeling overwhelmed.” [P64]

Face-to-face interactions were also deemed very impor-
tant by our survey respondents. Developers can receive
rapid feedback from their co-workers which facilitates talk-
ing through complex problems, discussing ideas, and mak-
ing design decisions: “Nothing beats being able to sit one-on-
one and talk through a topic, plan out a design or just converse
while coding. This is also my favorite way to learn from an
instructor because of the ability to ask as many questions as possi-
ble and have an open conversation.” [P319] Some respondents
reported using videoconferencing as a way to mimic co-
located interactions with other developers.

Q&A sites offer a quick way to debug issues while pro-
viding access to high-quality answers: “Almost any question
that I have, I can get an answer through these sites.” [P635]

Fig. 4. Demographics of the programmers that answered the survey (those recently active on GitHub with public activity).

Fig. 5. Word cloud of the programming languages used by the
programmers that answered the survey.

TABLE 1
Most Popular Languages

Language Frequency Percentage

JavaScript 912 61.9
Python 657 44.6
Java 611 41.5
PHP 411 27.9
C++ 383 26.0
C 351 23.8
Ruby 341 23.1
C# 213 14.5
HTML 194 13.1

7. http://thechiselgroup.github.io/channel-study/

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

Other respondents mentioned additional uses of Q&A sites,
including learning from code examples and getting feed-
back from experts.

Search is an essential tool for finding information: “Good
for finding the initial direction; also [. . .] to learn something new.”
[P484] It also provides quick access to software documenta-
tion and supports problem solving. Many respondents
reported using search engines as the entry point for finding
answers onQ&A sites.

Microblogs provide just-in-time awareness of the latest
advancements and updates in the development community:
“Allows me to get up-to-date information on topics I’m interested
in—conferences, new releases, new articles/books, etc.” [P95]
They were also considered important for getting feedback
from other developers and for nurturing relationships with
like-minded people.

Private chats (e.g., IM, Skype chat, Google chat) are essen-
tial tools for supporting team communication and collabora-
tion through a single channel: “It provides a single channel to
digest and discuss everything that is going on with the team.”
[P415]Many survey respondents felt that private chats are the
closest replacement for face-to-face interactions when quick
feedback is needed and team members are geographically
distributed.

Feeds and blogs provide the most up-to-date information
on development practices and technologies: “By following
several feeds, one can find out how veterans use a tool/technology/
language... And it’s easier to know the trends”. [P1016] Blogs
encapsulate a more personalized view on a given topic and
are an important channel for documenting techniques while

sharing specific coding tips and tweaks that can be used by
other developers.

Private discussions (e.g., email) support communication
across virtually every platform and among different stake-
holders (e.g., customers and users). They are a convenient
channel for disseminating information to large groups (e.g.,
mailing lists) while keeping conversations private and per-
sistent for later retrieval: “This is how you get to communicate
privately and can have proof for a later stage.” [P1041]

TABLE 3
Other Channels Reported in the Survey

Activity Channels

Keeping up to date events and meetups ð18Þ, software

documentation ð3Þ, research
papers ð3Þ, formal education ð2Þ,
MOOCs ð2Þ

Finding answers software documentation ð11Þ,
research papers ð3Þ

Learning educational sites and MOOCs ð20Þ,
events and meetups ð19Þ, software

documentation ð13Þ, tutorials ð7Þ,
research papers ð6Þ, code
reviews ð4Þ

Discovering developers headhunters ð16Þ, recruiting
sites ð12Þ

Connecting with developers events and meetups ð35Þ,
programming competitions ð2Þ, for-
mal education ð2Þ

Getting and giving feedback events and meetups ð9Þ, code
reviews ð4Þ, issue trackers ð4Þ

Publishing activities personal blogs and Websites ð32Þ,
conferences ð7Þ

Watching activities events and meetups ð4Þ, personal
blogs and Websites ð3Þ

Displaying skills personal blogs and Websites ð64Þ,
resumes ð6Þ, events and meetups ð5Þ

Assessing others personal blogs and Websites ð2Þ,
source codeð2Þ

Coordinating with others conference calls ð10Þ, cloud-based
services (e.g., Dropbox, Google

Drive) ð8Þ

The values indicate the number of times the channel was mentioned by
respondents for the corresponding activity.

TABLE 2
Test of Independence between the Different Demographic Factors in the Survey, the Number of Channels They Use,

and Their Responses Regarding Privacy, Feeling Overwhelmed, and Being Distracted

Each value is preceded by the name of the test used followed by its results: kw represents Kruskall-Wallis (degrees of freedom, x2 value), cs represents Chi-square
(degrees of freedom, x2 value and Cramer’s f), and sp represents Spearman correlation (r value). Values in bold represent where there the two factors appear not
to be independent with p < 0:05, specifically *** corresponds to p < 0:001, ** for p < 0:01, * for p < 0:05:

Fig. 6. Histogram of number of channels selected by each developer.

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 191

Public chats (e.g., IRC) have the advantage of enabling
communication among developers and users of a particular
software project. By being public, anyone with an interest
can join in and have a conversation with project main-
tainers: “Gives me direct access to the people who write my tools,
and gives me direct access to people who are using things I’ve
written” [P191]. Public chats also enable discussions and
faster feedback among team members, even if they are dis-
tributed around the world: “As a team spreads across the
world, we use IRC to preview most of our concepts before any
code is written.” [P731]

Discussion groups (e.g., mailing lists, Google groups,
forums) support mass communication and coordination

among people scattered across large and geographically dis-
tributed groups: “We are a physics collaboration of 3,000 people,
spread all over the world. Internal discussion groups are essential
for coordination on all subjects, including software development.”
[P365] Respondents also reported the usefulness of discus-
sion groups for gathering customer feedback: “Because it’s
where I find my customers’ opinions and ideas.” [P130]

Aggregators (e.g., Reddit) are socially curated channels
focused on new trends. They provide access to crowdsourced
content that has been filtered and collated by others, allowing
for developers to stay up to date with the latest technologies
without active participation. As one respondent put it, aggre-
gators are “[. . .] roughly the heartbeat of the current software dev
industry. If a technology is worth talking about, it will be talked
about.” [P1419] The value of aggregators is closely associated
with the value of their supporting communities, and survey
respondents appreciated that aggregators allow them to inter-
act with like-minded developers and get their feedback:
“[Hacker News] is the most welcoming community I have ever seen.
[. . .] You can interact with anyone (if they have public email) and
the content quality is top notch.” [P1126]

Project coordination tools increase group awareness of
current tasks and issues and provide a means for tracking
progress and discussing next steps: “Permits tracking in-prog-
ress work as well as receiving feedback. Essential for distributed
teams.” [P105] These tools improve the transparency of a proj-
ect’s activities, increasing progress visibility not only among
team members but also among clients: “Helps us coordinate
large tasks bases, especially when reporting back to clients.” [P486]

Books were indicated by some of our survey respond-
ents as a cohesive and progressive way for learning about a
topic: “[They make] learning much easier than the hunt and peck
method of digging through sites on the net.” [P1189] Another
subtle but crucial advantage of books is that they are

Fig. 7. Number of responses per channel indicating the importance of
each channel.

TABLE 4
Channels Used by Our Respondents and the Activities They Support

192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

“distraction free and generally better thought through and consid-
ered.” [P1319] Developers can gain in-depth and focused
understanding about specific topics, while avoiding being
distracted by the noise of concurrent information.

Social network sites increase awareness of the commu-
nity and help developers disseminate information from
other channels in various ways: “Because most often they func-
tion as the entry point to more relevant information published on
blogs, newspapers, books, etc.” [P224] In addition, developers
can reach potential users more easily, which is essential for
gathering feedback: “We have a group for Android Development
Testers in Google Plus where we can post things we want tested
and receive almost immediate feedback.” [P1240]

Rich content such as screencasts and podcasts provide
learning materials and communicate the state of the art in
technologies, tools, and practices for software development.
Developers are able to consume content while commuting
or performing other tasks. One survey respondent
highlighted yet another interesting aspect of learning using
rich content: “I’m a visual and audible learner. Seeing and hear-
ing others makes learning better.” [P1354]

7 THE CHALLENGES DEVELOPERS FACE USING

COMMUNICATION CHANNELS

Our fourth research question (RQ4) inquires about the chal-
lenges developers face using communication channels. Our
previous work [3], [6], [12] revealed that developers face
challenges related to distractions, privacy, and feeling over-
whelmed by communication chatter when using social
media channels. Consequently, our survey specifically
asked whether the respondents experienced these concerns.
We show the results from these Likert-style questions in
Fig. 8. We note that privacy is not a big concern for every-
one, whereas being interrupted and feeling overwhelmed
by communication traffic are issues for more developers.

To investigate if there were any relationships between
these three factors (Privacy, Distraction, Overwhelmed) and
their demographics, we performed a more in-depth analysis

of the responses. Table 5 shows the test of independence
between whether a person feels their privacy is affected or
not and if they feel overwhelmed or distracted by their use of
communication channels, as well as the different demo-
graphic factors of our respondents.

We anticipated that age might influence responses in
terms of privacy concerns, but no factor shows a statistically
significant relationship with the Privacy factor. A similar
result was found regarding the Distraction factor, where the
only statistically significant result was that there is very little
correlation (if any) with programming experience: r ¼ 0:07,
p ¼ 0:008. The Overwhelmed factor was found to have a
very low correlation (if any) to: age (r ¼ 0:07, p ¼ 0:014), pro-
gramming experience (r ¼ �0:07, p ¼ 0:012), and number of
projects (r ¼ �0:07, p ¼ 0:004). It was also found that people
who work on open source projects feel slightly more over-
whelmed than people who do not (H=19.89, df=6, p ¼ 0:005).
We believe these results show a lack of evidence that the
developers who worry about privacy, feel overwhelmed, or
feel distracted belong to any specific type of group (as
reported in the survey). Nonetheless, it is notable that there
is a modest positive correlation between the three factors
(with p � 0:001): people who worry about their privacy feel
overwhelmed (r ¼ 0:21) and distracted (r ¼ 0:19), and those
who feel distracted also feel overwhelmed (r ¼ 0:24).

We also asked the respondents to share any additional
challenges they face through an open-ended text question.
432 respondents (356 to the 2013 survey, 76 to the 2014
deployment) either elaborated on the challenges mentioned
above or informed us about other challenges they experi-
ence. A wide variety of challenges were reported and we
coded, sorted, grouped, and then categorized them using
an open coding and iterative clustering technique. The main
categories that emerged from our analysis are as follows:

� Developer issues
� Collaboration and coordination hurdles
� Barriers to community building and participation
� Social and human communication challenges
� Communication channel affordances, literacy, and

friction
� Content and knowledge management concerns

Postman,who extensively studied the use ofmedia in com-
munities of practice, refers to a media ecology and suggests
we undertake the study of “entire environments, their struc-
ture, content and impact on people.” [22]We note that the cat-
egories of challenges we foundmirror themain areas of study
suggested by Postman.We report these challenges below.

Fig. 8. Frequency of responses to Likert questions probing on developer
challenges with distraction, privacy, feeling overwhelmed.

TABLE 5
Test of Independence between the Different Demographic Factors and Whether Respondents Feel Worried about Privacy,

Feel Overwhelmed, or Are Distracted by Their Use of Communication Channels

Each value is preceded by the name of the test used followed by its results: kw represents Kruskall-Wallis (degrees of freedom, x2 value), cs represents Chi-square
(degrees of freedom, x2 value and Cramer’s f), and sp represents Spearman correlation (r value). Values in bold represent when the two factors appear not to be
independent with p < 0:05, specifically *** corresponds to p < 0:001, ** for p < 0:01, * for p < 0:05.

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 193

A fewparticipants also noted strategies they use to address
the challenges they face, which we describe in the Discussion
section of the paper. In the following, we provide representa-
tive participant quotes (shown in italics and linked to each
participant using P#), and we use bolded text to indicate
codes we assigned to quotes. Note that some responses from
the survey were coded with multiple codes. The main chal-
lenges that emerged from our analysis are shown in boxes.
When appropriate, we discuss and link the reported findings
to relevant literature. We summarize the categories of chal-
lenges found, the main findings that emerged, and the codes
with their respective counts in Fig. 9. Further details (linking
categories to findings to codes, and counts of codes and addi-
tional quotes) can be found on the companionWebsite.8

However, we stress that counting the coded challenges
could be misleading—only some participants took the time
to share this information with us after an already long sur-
vey, and thus they may have selected which challenges
to share with us in an ad-hoc manner. Nevertheless, for con-
cerns that were mentioned numerous times, the counts may
help us identify challenges that may be more prevalent
and warrant further investigation—we share these counts
in hopes of provoking future research. Two researchers
independently coded these challenges, iterating several
times to reach agreement on the codes derived and how

they were applied. When agreement was not reached, the
researchers followed a conservative approach and omitted
applying those codes to the survey responses.

7.1 Developer Issues

Some of the challenges reported concerned the developers
themselves or specific development activities.

Distractions and interruptions from communication
channels negatively impact developer productivity:

Survey respondents spoke of how the social and commu-
nication media at their finger tips can be a distraction or
can negatively impact their productivity through interrup-
tions [23] (see also Fig. 8). As P165 mentioned, “Social Net-
working Websites like Facebook are the worst ingredients for good
concentration in general.” P541 described how easy it is to be
drawn into unnecessary work: “If I spend a lot of time talking
with other developers about the best way to do things or reading
articles on social sites, I end up constantly refactoring or optimiz-
ing code instead of making progress toward the functional require-
ments of the project.”

P320 discussed how notifications and emails can be both
a cause for distraction and a waste of time: “Notifications:
when used in a moderate way, it is fine, but when overused, it is a
distraction for developers. Emails: too many emails from Project

Developer Issues:
Distractions and interruptions from communication channels
negatively impact developer productivity

Distractions 38*
Interruptions 11*

Keeping up with new technologies and project activities can be
challenging, but social tools help

Keeping up with new technologies 9
Keeping up with activities on projects 8

Collaboration and coordination hurdles:
Sharing and explaining code lack adequate tool support

Sharing code 4
Explaining code 7

Getting feedback on development activities is challenging
Getting feedback 8
Proprietary projects 3

Collaborative coding activities need improved tool support
Collaborative coding 3

Barriers to community building and participation:
Geographic, cultural and economic factors pose participation barriers

Time zones 14
Access to the Internet 3
Language barriers 20

Despite social channels, finding developers to participate is difficult
Finding right people 9
Convincing others (to participate) 3

Social and human communication challenges:
Miscommunications on text-based channels are common

Miscommunications 24
For many developers, face-to-face communication is best

(Not) Face-to-face 24
People are challenging, no matter which channels are used

Poor attitude 13
Intimidated 12

Communication channel affordances, literacy and friction:
Developers need to consider channel affordances

Private vs. public 10*
Synchronous vs. asynchronous 10

Ephemeral vs. archival 3
Anonymous vs. identified 1
Text-based vs. verbal 7
Face to face (vs. not) see above
No one tool fits all 14
Communication with users 11

Developers need to be literate with communication channels
Literacy 22
Lack of documentation 9
Learning tools 10

Communication channel friction can obstruct participation
Tool friction 23
Search is inadequate 16
Poor mobile support 5
Vendor lock-in concern 6
Notification issues 5
Poor channel integration 8
Channel overload 36
Poor adoption by others 21

Content and knowledge management:
Use of many channels leads to information fragmentation

Information fragmentation 15
The quantity of communicated information is overwhelming

Quantity 11*
(Finding the signal in the) noise 19*

The quality of communicated information is hard to evaluate
Quality 29
Obsolete information 8
Spam 4
Niche technologies 4
History of information missing 4

Strategies:
Developers used a variety of strategies to address their challenges

Deciding when to use particular channels 3
Deciding which channels to use and how 6
Encouraging others to use tools 1
Unplugging 3

Fig. 9. This shows the categories, codes, and counts of each code occurrence in the additional challenges shared by participants. Note that some
participants shared multiple challenges in the Other field. The categories of challenges we derived are shown in bold text; the findings that
emerged from the analysis are shown in italics, followed by the codes and counts in normal font. Codes marked with an * indicate challenges the par-
ticipants already indicated in the closed question (see Fig. 8). Strategies shared are described in the Discussion section of the paper.

8. http://thechiselgroup.github.io/channel-study/

194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

Coordination Tools can easily waste 15-30 minutes only to go
through them all in the morning, especially when I’m involved in
more than a few projects simultaneously.”

Keeping up with new technologies and project activities
can be challenging, but social tools help:

Keeping up with new technologies was a concern for
our respondents: “Staying cutting edge is a never-ending task.”
[P625] Several respondents discussed not knowing which
channels to watch: “Knowing where the activity is. Some days,
Hacker News might be the best place to follow. Another day, Twit-
ter might be. Another day, GitHub might be where I should look.
Another day, it might be a site or network I’m not even aware of.”
[P1564] The challenge of keeping up also emerged in our
previous work that investigated how developers use Twit-
ter [12]. P706 discussed how they found it easier to keep up
with technology in open source because of their use of social
tools: “Staying up to date with new company internal technology
because it is not on Twitter [or] Hacker News. I guess there is a
theme here: if it’s open source, help is plenty and readily available,
not so much for internal tools.”

Tools for keeping up with activities on projects were
seen as inadequate and in need of improvement: “In a
big project (WebKit, Mozilla, etc.) it can be hard to filter for
only ongoing work that is relevant. Most legacy UIs are terri-
ble (Bugzilla) and new ones (GitHub) lack features for large-
scale development.” [P109] While Baysal et al. [24] also
noted this challenge, other respondents described how
some modern tools address it: “We use HipChat (kind of a
private IRC) with HUBOT that watches our GitHub activity.
It’s wonderful because our entire team can be instantly noti-
fied about who’s doing what on which repository, and we’re
all in communication via mobile and desktop with the same
feed.” [P892] Keeping up with projects also relates to
how developers collaborate on projects, which is dis-
cussed next.

7.2 Collaboration and Coordination Hurdles

Respondents spoke of the challenges they face managing
and coordinating their projects. As noted earlier, the vast
majority of respondents said they had contributed to two or
more projects, including professional projects (see Fig. 4).

Many of the challenges shared with us did not relate to
the use of communication channels but rather poor project
documentation, a lack of requirements management, poor
standards adherence, and managing software licenses.
Respondents also mentioned challenges specific to project
coordination, such as work distribution, workflow friction,
scheduling hurdles, and the lack of a roadmap: “A lot of develop-
ers I know spend more time planning and debugging the work-
flow, rather than developing.”[P49]

Organizational constraints were also discussed, such as
how outside communication was discouraged in one orga-
nization, and how there was a reliance on proprietary serv-
ices in certain projects. However, some respondents did talk
about the lack of tool support for collaborative coding and
coordination activities, which is discussed next.

There is a lack of adequate tool support for sharing and
explaining code:

Developers had difficulties sharing code and explaining
code using their existing tools. P1416 discussed this issue
and how he dealt with it: “Many communication tools (email,
IM, etc.) are not especially good for talking about code. Generally
in any given conversation I’ll end up using several tools, e.g., IRC
+ a paste-bin (GitHub Gists), to effectively communicate ideas.”
P445 was enthusiastic about collaboration tool support
except when needing to explain code: “The biggest challenge
in soft-dev for me is four-fold: communicating the idea (Hangout),
managing the idea (Trello), logging the implemented idea
(GitHub), and explaining the implemented idea with the team
(Nitrous.io). The first three solutions are pretty solid. It’s the fact
you can’t always sit right next to someone and show them the
code and explain how everything works that is the most challeng-
ing part. Cloud9, Koding, Nitrous, etc. are all trying to solve the
last problem.”

Getting feedback on development activities is
challenging:

Developers also faced challenges getting feedback about
their own activities, especially for proprietary projects that
can’t use social tools: “Getting quick feedback for internal tech-
nology because you cannot ask on Stack Overflow.” [P706] Some-
times the challenge of getting feedback can be due to the
size of the project (community) rather than the channel: “It’s
difficult to share small new projects that aren’t very far along and
get feedback.” [P751]

Collaborative coding activities need improved tool
support:

Our survey concerned communication tools, but P1154
spoke of how coding tools do not adequately support
collaborative coding activities: “Live collaborative coding
tools. For example, we can currently edit a document collabo-
ratively in Google Docs. If we can have an IDE/tool like that
for coding too, that would be useful.” Some Browser-based
IDEs now provide this support and are starting to see
increased adoption [25], such as Nitrous.io and Cloud9.
Such tools may also address the challenges of explaining
code and getting real-time feedback (as mentioned
above).

7.3 Barriers to Community Building and
Participation

Over half of the survey respondents said they contributed to
open source projects, many of which were “pet” projects
(see Fig. 4). But many respondents experienced difficulties
participating in or finding others to join community-based
projects, as we discuss next.

Geographic, cultural, and economic factors can pose
barriers to participation through social channels:

The survey exposed challenges related to geographic, eco-
nomic, and demographic factors. Respondents mentioned
that different time zones interferedwith their work, aswell as
other issues such as poor access to the Internet due to eco-
nomic or political reasons. Language barriers were also a
common concern as many of the respondents were from non-
English speaking countries (see Fig. 3): “Themajority of develop-
ment-related communication I do is primarily written—IRC, chat,

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 195

email, forums, microblogging, blogging, etc. Considering that the
developers I work with come from a variety of nationalities and cul-
tural backgrounds, the intent of communication is often hard to
impart or judge, which can lead to misunderstanding.” [P31] These
challenges may be reduced in the future asmodern tools such
as Slack incorporate the notion of time zones, while Skype
now offersmultilingual support.

Despite using social channels, finding developers to
participate can be difficult:

A few developers also discussed challenges concerning
finding developers to collaborate with or convincing others
to participate. As P1285 mentioned, “I used to think that pub-
lishing application code with an open source license would attract
collaborators with an interest in using/improving that applica-
tion, but now I feel like most users of code hosting sites are more
interested in collaborating on tools they can incorporate into their
own projects, and almost no one is interested in working on appli-
cation code. I guess the challenge here is convincing developers
that your application is interesting even if your code is not.” But
P556 discussed how social tools make it easier to reach peo-
ple that could participate: “When I was first contributing to an
open source video game project on Google Code, it was hard to get
in touch with one or more of the core developers of that project
because there was no right place/tool to do that. The same project
moved to GitHub recently, and now I feel more comfortable
because I can simply make a pull request to the project.”

7.4 Social and Human Communication Challenges

Many respondents specifically mentioned struggling
with communication or people issues. We discuss a
selection of the most prominent themes below.

Miscommunication on text-based channels is common:

Respondents frequently mentioned experiencing issues
due to miscommunication on text-based channels, which
P385 discussed: “With the increasing amount of communication
being done with social tools and IMs, chat, the amount of misun-
derstanding and bad, incomplete briefs grows [at] the same rate.”
P126 described how much more effort text-based communi-
cation requires: “When you write, context and expression is lost.
There have been so many times when something I wrote did not
come across to the other person as intended. This causes problems
all the time. You must be careful and spend time on the words and
phrases you use when communicating in text. If you can’t pick up
the phone, then use IM, and as a last resort, email.” P1331 agreed
with this and mentioned how slang can introduce even
more ambiguity.

Text-based miscommunication also relates to the lan-
guage barriers mentioned above. As P31 lamented, “The
lone shooter that misunderstands you and begins shooting at
you. [I] have been called an arrogant dickhead once and have
also been informed that I was dictating somebody something
when I actually tried to SUGGEST something. So, language
is also a challenge because I am a Dane.”

For many developers, face-to-face communication is
best:

Many respondents shared the opinion that “nothing repla-
ces face-to-face communication” when trying to avoid

miscommunications. As P136 explained, “Without face-to-
face communication, misunderstandings happen more often.”
Other developers discussed how face-to-face communica-
tion is needed for activities such as code review and for
explaining the big picture underlying a design. As P319
mentioned, “When working apart people aren’t always at their
computer or responding to messages, and in the case of code
review they have to summarize their thoughts into a few para-
graphs. In person it’s much easier to convey a thought, have a dis-
cussion and come to a resolution.” P1241 added, “Clarity of
intent (it can be hard to get a point across through text-based
media)—it can be difficult to see the big picture, or even the pieces,
without talking face to face.”

P176 mentioned that to address such issues, some com-
panies move their staff on-site: “Often collaboration tools are
still not as good as face-to-face communication. Many software
companies have moved to having all of their staff on-site full-time,
because the communication is just better. Especially when two or
more developers are collaborating on the same code in real time
(pair programming) or ‘whiteboarding’ on a design. . .being there
in person is just different.”

Others shared with us that there are tools that can sup-
port face-to-face-like interactions: “Often times it is difficult to
get ideas across in written communication. This is where tools
such as Google Hangout and Skype can be beneficial, but they are
not always an option.” [P206] On the other hand, not every-
one wants face-to-face interactions. P737 mentioned their
main challenge was “other developers that insist on using face-
to-face communication exclusively.”

People are challenging, no matter what channels are
used:

Poor attitude and a lack of willingness to collaborate are
issues no matter what tools are used: “[Tools] still don’t solve
the difficult people problems.” [P264] As P532 explained, “Tools
facilitate good processes and interactions between individuals who
are willing to collaborate and cooperate. They don’t make people
willing to cooperate in the first place; in these situations they actu-
ally get in the way of identifying the root problems and dealing
with them. People can hide behind GitHub better than they can in
person.”

P421 mentioned that the benefits of using these tools can
be achieved by ignoring some of these people issues:
“Personal restraint [with] people who are mean (or, dicks). Other-
wise, amazing area for learning and sharing.” P468 explained
that although tools bring opportunities for transparency
and collaboration, getting others to buy in can be tricky:
“The biggest challenge is getting other devs to be open both with
their work and to new ideas.”

The social transparency [26], [27] of the channels intro-
duced other issues [28]. Developers told us how they felt
intimidated, either because they were worried that their
own contributions or skills were not good enough, or that
others may not react well to their contributions. As P302
told us, “The biggest thing I fear in my work is that I’ll say some-
thing that is not 100 percent technically accurate or could be mis-
interpreted. Other developers are utterly merciless, and I have
thin skin. Whenever I post something on HN or Stack Overflow, I
find that I feel anxious that someone will tear me a new one over
some oversight in my analysis.” P643 discussed how feeling
intimidated can lead to repressed interactions within the

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

community: “Lots of people communicate less than they other-
wise would for fear of looking stupid to peers who are assessing
them in a colossal global meritocracy. Very unhealthy. I suspect it
contributes to the high prevalence of anxiety and depression in IT
(in combination with often sedentary lifestyles).”

7.5 Communication Channel Affordances, Literacy,
and Friction

Here we consider challenges that relate closely to the prop-
erties of the communication channels used, such as the
affordances of the channels, literacy needs, the impact of
the ways developers use (or misuse) the channels, and the
friction the channels may pose to development activities.

Developers need to consider channel affordances:

Different channels provide different kinds of affordances,
as Daft and Lengel’s Media Richness Theory describes [29].
But developers don’t always consciously think about these
affordanceswhen choosingwhich channels to use.

For example, communicating using face-to-face and ver-
bal channels is normally ephemeral as opposed to archival
and may be more suited to a smaller group size, but on the
other hand, “voice communication is much quicker, but it is not
easily transcribed and it is difficult to use with more than 3 (if not
2) people.” [P1224]

Developers also frequently referred to a tension between
synchronous versus asynchronous communication chan-
nels. P927 elaborated why asynchronous is sometimes pre-
ferred: “I try to use asynchronous communication so [I] can
decide the time when to communicate and [I won’t] be disturbed
when [I’m] programming or learning! On the other side I have the
[ability] to talk face to face to the other developers in the team,
which is the most effective way to learn, coordinate d. But it is not
asynchronous.” However, as mentioned, the use of synchro-
nous channels can lead to interruptions and
misunderstandings.

Developers experienced tension when having to choose
between private versus public communication channels:
“Many developers host their code projects on blogs, etc. Some-
times the only way to communicate with the author is to post a
comment, since they do not disclose their email address. Also, on
forums, of say, a particular library—e.g., openCV forums. The
forum posters seem so professional and experienced, I tend to
avoid posting on the forum to avoid embarrassment (lol).”
[P1036] Some respondents reacted negatively to the trans-
parent nature of social networking tools over traditional
communication media such as email: “Very few new develop-
ers are learning how to use old tools such as email and are tending
toward using social networks and other tools. It can be frustrating
when you want to collaborate and they insist on proprietary soft-
ware or technology, or insist on using privacy-invasive tools such
as Skype or Facebook.” [P897]

Some also experienced confusion using channels where
communication can be private or public: “I am sometimes
frustrated that there are too many places to do the same thing,
especially when I answer a question privately and want to instead
make that answer public.” [P137] In contrast, P1399 shunned
the use of private channels: “People complaining about their
privacy tend to slow down development.”

Another affordance touched on by P40 relates to the fan-
fare of the communication channels used: “Sending urgent or

major information is hard, too: how to highlight information sent
to others when they are free to ignore it?”

Developers shared with us that no single tool fits all
developers’ needs nor suits all stakeholders. Different
stakeholders have very different needs, therefore, different
channel affordances will not suit everyone: “Different
groups in the entire team often prefer to use different tools. For
example, the coders will use GitHub, but a project manager and
the testing team will use Basecamp. This makes overall coordina-
tion extremely difficult.” [P160]

Finding the right channel to support communication
with users is also a challenge. P1528 described how difficult
it can be to keep track of communication from users (and
other developers): “Users/developers tend to report bugs or ask
for new features with email and forum posts which can be tricky to
keep track of.” To address this, some projects promote user
reporting of issues on GitHub, but P394 explained the poten-
tial disadvantage with this approach: “. . . it’s also a lot of work
to separate real, confirmed issues that we create from the tons of
not-always-useful stuff that our users create. I think the nail in the
coffin was when a user closed one of our bugs.” Moreover, P700
did not appreciate any communication with users and dis-
liked the way social channels create opportunities for users
to contact them: “Users of my open source software often feel enti-
tled to free technical support. Because it’s so easy to reach me, they
can be a nuisance sometimes.”

Developers need to be literate with communication
channels:

Inadequate communication channel literacy and a poor
understanding of channel affordances can lead to chal-
lenges for developers wishing to collaborate, exchange
information, or network with others across their communi-
ties. As P1005 said, “The main challenge for me is the interaction
with people who are not literate enough to use the tools I consider
standard.” P1600 discussed how Git (the underlying version
control system for GitHub) can be challenging to use: “Also,
Git is a critical collaboration tool, but it is not well understood by
many of the programmers I interact with.” Developers recog-
nize that learning these tools is a challenge. P1385 men-
tioned how using GitHub itself, or even IRC, can seem
difficult: “I still don’t understand how to do simple things in
IRC and often don’t bother because of the perceived effort
involved—much easier to post on Stack Overflow. With tools like
GitHub, there are similar issues (like how to submit patches)
although documentation is improving.”

Respondents discussed the challenges around having to
learn new tools. P404 felt that “the biggest challenge [about
using] social tools during development is when a new one is
adopted into the mix; the learning curve associated with a new
tool eats time unless the program is intuitive and pointed.” P1315
emphasized how these channels require different communi-
cation skills than when communicating face to face:
“Basically a very different way to communicate compared to face-
to-face comm. It simply has to be learned.” Furthermore, each
new channel may necessitate the acquisition of a different
vocabulary. P526 felt that “if you don’t know the right [vocabu-
lary] or technology you want to use, the [dialog] usually ends
quickly.” P981 mentioned that some of these tools are diffi-
cult to learn because of a lack of documentation.

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 197

Literacy, however, is not just about knowing how to use a
particular channel, but when to use it and when not to use it
(depending on the need, e.g., to avoid interruptions).

Communication channel friction can obstruct participa-
tory development activities:

Technical issues introduced friction for developers, such
as the lack of mobile support, tools crashing, poor support
for search, annoying notifications, and hardware limita-
tions. P919 claimed that they “never have enough screens.”
This concern about monitors is not surprising given the
number of channels and tools developers use. Other tools,
despite being highly popular among developers, suffer
usability issues: “Hacker News dominates and is terrible.”
[P1279]

Vendor lock-in was also an issue that was mentioned by
developers, and not surprisingly since many of the social
tools developers use are proprietary. P334 discussed this
issue at length: “Much of the value that we [are] responsible for is
now kept safe and maintained by a third party. It’s risky... If eclipse.
org, stackoverflow.com or GitHub goes away, our team(s) would
suffer severe damages. I would love to be able to havemy ownweekly
backup of the social interactions that take place in a format that is
machine processable such that in the event of total failure I could
migrate our history of communication to another host or another
technology.” Projects also face issues when a proprietary tool’s
privacy policies change: “Having to shift platforms when a
company’s policies change (e.g., Facebook’s altering of privacy set-
tings, SourceForge’s adware, Google’s pushing Plus).” [P681]

Developers also mentioned usability issues getting in
their way—that collaboration tools and social tools can
introduce friction even though they bring benefits: “Code
review and collaboration tools (Asana, Trello) I mostly find to be
necessary to some extent but generally very annoying. Seems like
one more thing. Maybe they’re necessary evils, but they seem to
get in the way a lot.” [P1255]

Many challenges arise due to poor channel integration,
such as having to deal with identity management. P1430
explained the many issues that a lack of integration brings:
“Poor integration between them and an overabundance of options.
There are a lot of tools out there, but it’s hard to put them together
into a cohesive workflow. Especially when participating in a lot of
open source projects, every one has a different set of overlapping
but different tools. Another problem is identity management.
With personal projects and work projects, I’d like to be able to
manage them separately but without the inconvenience of main-
taining separate accounts.” Poor integration makes it difficult
to monitor multiple channels, but developers also com-
plained about channel overload—there are simply too
many channels to choose from and follow.

Poor or scattered tool adoption can also introduce fric-
tion, especially when there are many tools available: “There
are too many variants of things like project management tools,
time-trackers, issue-trackers. . .it’s hard to get a team to agree on
tools, and none of these stand out as an obvious leader.” [P694]
And getting agreement on communication tools is also diffi-
cult. P422 experienced difficulties “convincing other develop-
ers on a project to all use the same communication tool for [the]
project.” The problems are exacerbated by globally distrib-
uted teams: “I live internationally and work on globally

disparate project teams, so G11N [globalization] is a big deal.
Finding a consistently-used platform for such a large and varied
group of developers is also a challenge, as some only do IRC,
others only Google Groups, others only email.” [P380]

7.6 Content and Knowledge Management

Developers face challenges with information fragmentation
andwith the “quality/quantity of information available.” [P1242]

Use of many channels leads to information
fragmentation:

Information fragmentation results from the use of too
many channels: “One of the things that bugs me most is multi-
ple mediums. At any given moment I can get a chat, an email, a
text, or whatever—wish it was more streamlined.” [P1401] Frag-
mentation also occurs because of the inconsistent or poor
adoption of particular channels (as discussed above). P1250
suggested that one could address this by encouraging
others to use the same tools or by using tools that integrate
communicated information from multiple channels:
“Making sure everyone else you’re working with also uses the
tools. One of the biggest issues with fragmentation of the commu-
nication options is that there are so many different ways to com-
municate that it’s harder to find it all in one place. Important
communications get lost; Key people don’t see them; They can’t be
retrieved by a single search tool. Companies such as Slack are
attempting to solve this problem, but it has a long way to go.”

The quantity of communicated information is
overwhelming:

Developers found it challenging to find the “signal in the
noise”—the “explosion” of available channels has led to an
increase in volume and duplicate information posted in
multiple locations. This is particularly difficult for develop-
ers working on multiple projects where different tools are
used: “The variety of tools, and the need to switch context and
tool set between various sub-projects, adds a lot of cognitive over-
head.” [P815] There is also a fear of missing important infor-
mation: “Too many channels means that needed or interesting
information disappears, and going through all of the channels you
mentioned is impossible in limited time.” [P917] Although poor
channel integration that leads to information fragmenta-
tion is one issue, the channels themselves further promote
an increase in the quantity of communication posts to attend
to: “I feel that social tools largely present information in frag-
ments, with many different approaches and styles and agendas,
which makes it time consuming to stitch together a working
knowledge of technologies I’m learning.” [P1189]

The diversity and velocity of information makes it hard
for developers to keep up with new technologies. As P1409
put it, “There definitely is information overload. People think I’m
joking when I mention the ‘javascript framework of the day’.”
Developers try to stay up to date on these new technolo-
gies [12], but the availability of so many different news sites
and aggregators means they are inundated with content.
P1144 talked about how these tools affect productivity: “The
news overload via Aggregators (Hacker News, Reddit, Digg,
Slashdot, . . .) affects productivity. I don’t use too much social net-
working (Facebook or Twitter) as they are a huge time-sink and
sheer noise as far as technical development work is concerned.”

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

The quality of communicated information is hard to
evaluate:

In addition to receiving too much information, many
developers described their concerns with the quality of
information: “Judging the reliability and credibility of sources
can be a challenge as information changes quickly and isn’t always
correct.” [P846] There was a particular concern with the
quality of content on social sites: “I sometimes feel the lack of
quality content on social networks, q&a sites—especially when it
comes to incompetent answers to questions I ask. So the challenge
is to filter the information you get from all of the sources.” [P95]
Developers were also concerned by discoveries of contra-
dicting or inconsistent information.

There were also complaints that some information may
be obsolete: “Technologies are moving so fast, and most of the
content on the Internet could be outdated quickly. It’s sometimes
hard to filter that outdated information.” [P492] Sometimes the
channels developers use are subject to spam. As P750
told us, “Recruiters keep spamming me through GitHub or Stack
Exchange looking for Web developers.” Developers also
described how it can be difficult to find content on niche
technologies and that it was hard to acquire and understand
the history of the information created.

8 DISCUSSION

Through our survey, we investigated how a complex eco-
system of communication channels shapes and challenges a
participatory development culture.

We first discovered characteristics of the programmers
that participate in and contribute to projects hosted on the
GitHub social coding site. We now examine how the reported
respondent characteristics may indicate a lack of participant
diversity, as well as the implications that arise from this.

Our survey asked respondents about their participatory
development activities. Previous research has focused on
development activities, but we discuss why it is important to
also consider non-development activities (such as networking
and learning) in terms of understanding future tool needs.

Next, we look at the complex ecology of communication
tools that our survey revealed. We compare our findings
about the benefits and challenges of using these tools to
existing research about communication tool use in global
software and open source development. We also share
some recommendations that emerged directly from the sur-
vey responses to address challenges developers experience
using a complex communication and social tool ecology.

Finally, we discuss some of the limitations of our study
and propose future research directions.

8.1 Characteristics of the Programmers Surveyed

Our survey was answered by developers that contribute to
publicly hosted software projects on GitHub. When we
designed our survey, we expected that this population may
be skewed towards younger, male, North American devel-
opers, and that we might see differences across the demo-
graphics in the number and types of tools used and their
perceived benefits and challenges. Our expectations were
somewhat met—the respondents were skewed in the man-
ner we expected—but our analysis did not reveal

differences in the tools used or how they were used across
the varied developer demographics.

We were surprised that only 3.9 percent of our respond-
ents said they were female. We expected this number to be
higher as a recent survey of more than 2,000 FLOSS contrib-
utors indicated that 10 percent were female [30]. Our statis-
tic is, however, more in line with earlier surveys that
indicated females accounted for 1–5 percent of open source
participants [31]. Combined, these results may indicate an
ongoing or increasing lack of gender diversity in the FLOSS
community. This lack of gender diversity may go beyond
FLOSS as many of our survey participants were profes-
sional developers. A lack of diversity has recently been
shown to negatively impact productivity in FLOSS proj-
ects [32], but we are also concerned that skill development
and networking benefits gained from participating in
FLOSS or publicly hosted projects may be harder to achieve
for certain groups of developers. Further research is sorely
needed to investigate if and how communication and social
channels can be improved to reduce the diversity gap in
software development.

Another interesting but somewhat expected characteris-
tic about our respondents relates to their age: 77.9 percent
said they were 32 or younger, so-called millennials. Other
surveys with FLOSS developers also show similar distribu-
tions [30], [32]. We expected that older developers may not
use the same set of tools or as many tools as younger devel-
opers, but we did not see much of a difference, likely
because our survey was biased towards developers that
embrace social tools. We hope to repeat the survey with a
different population of developers. Our survey also showed
that older programmers are more likely to work on profes-
sional projects and less likely to work on open source proj-
ects. Meanwhile, we found that when a person is a
professional programmer, it is less likely they will contrib-
ute to open source. One hypothesis is that some software
organizations may discourage open source participation
among their employees, either directly or indirectly. Future
work is needed to investigate this hypothesis.

8.2 Beyond Coding: Understanding Tool Needs
for Participatory Development

Previous research into tool needs has tended to focus on
development activities rather than the broader set of activi-
ties that are the hallmark of a participatory development
culture [6]. In our survey, we considered how communica-
tion and social tools are used to support a number of differ-
ent activities that developers care about, such as learning
and sharing with others, networking, and keeping up to
date with new technologies and project activities. The par-
ticipatory activities we inquired about were inspired by
Jenkins’ definition of a participatory culture [1], but our pre-
vious literature review [6] revealed that this list of activities
is also important to developers. However, it is possible that
this set of activities is not complete and that further research
is needed to understand the full set of participatory devel-
opment activities that need to be supported through com-
munication and social tools.

We feel it is important to understand the broader activi-
ties that developers care about so that our future tools and
guidance on work practices can support these needs.

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 199

Although developers care about code quality and velocity,
they also recognize that they need to continuously learn
and network to create opportunities. Ultimately, this should
help improve the work they do on current as well as future
projects.

8.3 Towards Understanding the Ecology of
Communication Channels Developers Use
in a Participatory Culture

Our survey helped paint a picture of the complex and broad
ecology of tools that developers use. We were also able to
determine which tools were deemed to be the most impor-
tant for participatory development activities: code hosting
sites, face-to-face interactions, Q&A sites, and search
engines (Fig. 7).

Given we requested participants via GitHub, it is not sur-
prising that the majority of respondents said code hosting
sites were the most important (73 percent chose it). Code
hosting sites serve an important role in providing version
control, issue tracking, and several means of communica-
tion between developers.

Face-to-face and Question & Answer (Q&A) sites were
practically tied in second place. The importance of Face-to-
face implies that, even in a rich environment of electronic
communication channels, developers still have a strong pre-
ference towards communicating in person. This finding res-
onates with previous works on the impact of distance in
collaborative settings (e.g., [33], [34]). Although Face-to-face
is recognized as the “richest” channel for communica-
tion [35], we were still surprised that so many developers
said it was important. A high percentage of respondents
said they worked on distributed open source projects where
co-location is likely impossible—we suspect that many
developers thought of Skype or Google Hangouts as a Face-
to-face channel.

We know from other research [36] that Q&A sites play a
prominent role in developers’ activities, but we do not
know if developers use them as a communication channel
with other developers (bidirectional communication) or
mostly as a resource where they can get quick answers to
questions that they have (unidirectional communication).
We also suspect that the goal of Search (the fourth most
important channel) may be related to the goal ofQ&A sites,
as answering technical questions is one of the most impor-
tant developer information needs [37], [38] and resources
such as Stack Overflow are designed to be reached through
Search tools.

Giuffrida and Dittrich [20] reported on the usage of
social software in software engineering projects and in
distributed teams through a systematic mapping study.
They discussed the use of instant messaging for reducing
communication barriers between remote collaborators. In
a related work, Dittrich and Giuffrida [14] explored the
role of instant messaging in a global software develop-
ment project and found that IM not only supports com-
munication among distributed team members, but also
provides a means to build trust and social relationships
among co-workers. In our survey, Private (e.g., Skype
chat) and Public (e.g., IRC) chats were deemed as the
most important channels by nearly 15 percent of our sur-
vey respondents (6th and 9th positions, respectively; see

Fig. 7), which indicates the importance of chat tools for
supporting development activities, especially regarding
informal communication.

Giuffrida and Dittrich [20] also mapped studies on the
use of blogs and microblogs. In our survey, Microblogs
were deemed as the most important channel by over 200
respondents (nearly 20 percent chose it), thus earning the
5th position, while Blogs ranked 7th. Our qualitative analy-
sis showed that both of them help increase awareness of the
most up-to-date developments in developer communities. It
is important to note that the vast majority of papers found
in Giuffrida and Dittrich’s systematic mapping refer to the
use of communication channels in enterprise settings. As
the demographics of our survey indicate, our survey popu-
lation is more mixed, including professional, open source,
and hobbyist developers. Further research is needed to
explore the interplay between private and public software
development when it comes to communication channel
usage.

It is also important to note that most studies that have
explored how social tools are used in software development
studied just one or two communication or social tools [6],
[20]. One exception is a short survey conducted by
Black et al. in 2010 where they found that several social
media tools were used to support development work [18].
Another key exception is the work by Turner et al. [17]
where they studied the “workplace communication
ecology” in a small company of about 50 participants using
surveys in 2008 and 2009, followed by interviews with 23
participants. They reported on clusters of tools used, as well
as the strengths and weaknesses from the various channels.
Since the employees were co-located, not surprisingly, Face-
to-face was the most preferred communication channel.

The ecology of tools that developers use is interesting to
study because we see developers using multiple tools for
the same activity, as well as using more tools over time.
Turner et al. [17] also found an increase in the number of
tools used as far back as 2009. We stress that this increasing
reliance on a complex constellation of tools brings several
challenges, as discussed in the findings above and as
Giuffrida et al. presented in their mapping study [20].

Next, we discuss preliminary recommendations for
practitioners wanting to address some of these chal-
lenges, but we also call on the research community to
study these issues further and to suggest new processes
or tools to address the increasing participatory needs of
software developers.

8.4 Recommendations for Practitioners Choosing
Tools

In our survey, we probed through an open-ended ques-
tion about the challenges developers face using an eco-
system of communication channels. These challenges
point to a number of recommendations that may be
helpful to other developers. In the following, we formu-
late some recommendations for developers that rely on a
number of communication channels while engaging with
a participatory culture of software development. Our rec-
ommendations are partly based on our literature review
as well as on strategies the survey respondents reported
using to address the various challenges they

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

experienced. We coded and categorized these shared
strategies, as shown in Fig. 9.

We stress, however, that future research is needed to val-
idate these recommendations and that this set of recommen-
dations is likely not complete—discovering them was not
one of our research goals, and thus our survey did not
explicitly attempt to elicit such recommendations.

Recommendation 1: Be aware of channel affordances and
choose tools accordingly.

There is a vast array of communication channels that
today’s developers (and other knowledge workers) can use
(see Fig. 1). Particular channels offer different affordances,
as described by the “Media Richness” theory [33] and as elab-
orated in Section 7.5 of this paper. For example, some chan-
nels offer more immediacy for communication (e.g., face-to-
face) while asynchronous channels such as email offer a
chance for deeper reflection before having to respond. Other
channels, although immediate, may introduce distractions.

In previous work, Treude et al. [39] investigated the
properties of different documentation channels in software
projects and found that different channels had different
benefits and drawbacks. For example, they found that blogs
were seen to generate more fanfare than wikis and were
more suitable for posting important announcements that
should not be missed, whereas wikis were easier to change.
Similarly, Calefato et al. [40] discuss the appropriateness of
different communication media to support distributed
requirements engineering.

Developers may not always be consciously aware of
channel affordances and the trade-offs between them. How-
ever, they need to learn to recognize the strengths and
weaknesses of different channels and to recognize tensions
between private versus public channels, synchronous ver-
sus asynchronous communication, ephemeral versus
archival channel properties, anonymous versus identified
participation, and support for different communication
types, such as textual versus verbal versus face-to-face
conversations.

Recommendation 2: Define a communication covenant
with project members.

To enhance distributed work, Olson and Olson [33] sug-
gest that teams create a “communication covenant” to pre-
scribe which channels should be used for different kinds of
communication within a team. Similarly, Giuffrida and Dit-
trich [19] conceptualize the role of communication channels
in helping to establish persistent coordination mechanisms
among team members. Indeed, many successful open
source projects recommend which channels to use, such as
how the Angular project specifies which channels should be
used for different activities.9 P253 felt that collaborators
should not just agree on tools, but also agree on how they
must be used: “The tool matters less than how people use it. Big-
gest problem is people not using tools the way it was agreed
upon.” Although some project teams do figure this out with-
out a formal covenant: “Small autonomous projects/teams who

have a fairly mutual understanding of what communication/col-
laboration tools they want to use to achieve their needs/goals tend
to experience little communication friction, I find.” [P783]

Giuffrida et al. [20] also suggest that groups need to pay
attention to how tools are socially negotiated. Social proto-
cols and tools not only need to be decided upon initially,
but also adopted and adapted by people over time, thus
being socially shared, modified, and appropriated [19]. Fur-
thermore, other researchers have noted that there is a need
to establish practices on how to use social software in devel-
opment contexts [20].

Rrecommendation 3: Think leanwhen adopting new tools.

A common challenge reported by our respondents was
channel overload, as discussed above. Although there are
many possible channels for developers to choose from,
using too many will lead to people feeling overwhelmed
from having to manage so many different tools and will
also increase the chance that information is fragmented
across channels. P232 suggested a way to address this: “The
use of numerous tools may be overwhelming. It is usually
assumed that it is better to use fewer tools, and increase the direct
communication frequency between developers using face-to-face
or chat.”

Recommendation 4: Stay abreast of the latest tools that
may improve development productivity and team work.

This recommendation may seem to contradict the last rec-
ommendation to use fewer tools, but many of the more recent
tools (such as Slack) aggregate communication from different
tools through one channel. We learned from our respondents
that no one tool fits all needs: “There are too many sources of
communication to monitor, I have been trying to use tools like Hip-
Chat and Flowdock to get a more unified communication channel.”
[P980] Likewise, new tools may emerge that address other
challenges and they should be considered for adoption.

Recommendation 5: Take the time to learn how to use the
channels most effectively.

As discussed above, tool literacy is considered to be
very important. P488 described how poor literacy with
team members can lead to frustrations: “Lesser-skilled
developers (typically designer-developers) sometimes struggle
to use the common tools like Git/GitHub, screen sharing, text-
based communication and to configure their own development
environment. This [means those] collaborating remotely get
bogged down in stupid troubleshooting sessions.” P729
described how important it is to develop skills that
make the most of particular channels and avoid chal-
lenges such as noise: “Developing filter skills to pick out
the important things from the noise.”

Recommendation 6: Know when to unplug.

Some respondents described how they unplug from
the Internet or from specific communication channels to
allow them to focus and to avoid interruptions and dis-
tractions. P1336 shared how they consciously decide
when to use certain communication channels: “I turn off
most communication tools at the right times (i.e., when I’m
not in need of feedback or help). I’ll still use GitHub for

9. https://github.com/angular/angular.js/blob/master/
CONTRIBUTING.md

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 201

finding resources and a private messaging tool, HipChat or e-
mail for quick questions.” Similarly, P534 described using
a command line tool to avoid distractions in the
Browser: “If you have to go to a Web browser there is a 10
percent chance you’ll be distracted. I use the project ‘howdoi’
to get answers from Stack Overflow on the command line so I
can stay out of the browser and keep focus.”

P825 discussed how it is important to be mindful about
how one feels: “Biggest challenge is meta–e.g., *noticing* when
I’m feeling overwhelmed or distracted and adjusting to adapt
(e.g., closing IRC, taking a twitter hiatus, etc.)”. P646 recom-
mended that “one needs to exercise self control when using these
tools, otherwise it’s easy to end up spending more time on them
than needed.” P692 went one step further, suggesting that
“sometimes it helps to have a day of development where you
unplug [the] Internet.”

8.5 Limitations

Studying the participatory culture of software development
is challenging because it involves understanding the tools
and communication channels developers use, the content gen-
erated through these channels, the developers themselves
and their perspectives, the development activities and actions
supported by the tools, and the interplay between all of these
aspects. Through our survey, we aimed to focus our investi-
gation on the communication channels developers use to
support their participatory development activities, as well
as developers’ perspectives concerning the use of these
communication tools.

We opted to use a survey instrument to reach a broad
population of developers. The survey was developed
through several phases of design and pilot studies as we
needed to compromise between developer time and the
amount of information we gathered. The survey inclusion
criteria suggest participant bias towards social code hosting
systems, however, this population was the focus of our
study. Therefore, we do not claim generalizability of our
results to all developers. Our survey and the underlying
source code are available online.

At least 60 percent of our respondents work in Web
development. Our results resonate with an increase in
the popularity of Web technologies and programming
languages such as JavaScript and CSS.10 However, our
findings may also be biased towards development practi-
ces that are most commonly found in Web development
projects.

Despite their length, the 2013/2014 surveys had 21 per-
cent/16 percent response rates, respectively. Many develop-
ers told us they were happy to contribute to this research as
they were also curious about the channels other developers
use and the challenges others experience. Since the survey
was long, the respondents may have suffered from fatigue
and may have selected fewer channels for activities further
into the survey, and the earlier responses to questions may
have influenced later responses. We considered randomiz-
ing the order of the questions, but we opted for a more logi-
cal order as we felt developers would find it easier to
answer questions in this manner.

Another limitation (that we recognized as we conducted
our study) is that the tools developers use are changing
faster than we can study! For example, Slack was not widely
adopted at the start of our survey, but is now used by a
great many developers.

Although our findings from the demographic and chan-
nel usage questions are insightful, the data we received
about the challenges developers face was the most interest-
ing as we learned how tools may benefit but also negatively
impact developer work practices. To offset bias during cod-
ing, we recruited an additional independent coder to ana-
lyze our data. When the coders did not agree, we did not
apply the code. We stress that the counts we report may not
be an accurate indicator of the importance of the additional
challenges as this was an optional open-ended question
posed at the end of a long survey. In the presentation of the
challenges, we rely heavily on the developers’ own words
to bring credibility to our findings. In Fig. 9, we provide
counts for each code and further expand this table in the
companion Website11 with additional quotes. Future work
is needed, however, to determine the importance of these
challenges, as well as reveal additional strategies to address
these challenges and to validate the recommendations we
provided above.

Finally, we emphasize that our study is just one step
in a larger effort towards forming a theory of knowledge
work in a participatory culture of development, as we
discuss next.

8.6 Future Work

Our study paves the way for the development of theories
concerning how developers use tools and suggests ways
that tools may be improved. The software engineering com-
munity has witnessed a major paradigm shift in recent years
in how developers communicate and participate in each
other’s projects and in each other’s learning. There is a great
need to study emergent software practices as well as the
tool constellations that modern developers use.

To date, we have collected data from two large-scale sur-
veys (in 2013 and 2014), but we intend to deploy the same
in future years (with some changes to account for newer
communication channels) as we wish to understand how
the use of communication channels by developers may
evolve over time. But surveys are limited in the kinds of
data and insights they can provide.

As a continuation of this study, we anticipate that future
interviews with developers would shed more light on the
strategies they use to mitigate the challenges we revealed in
our survey. Observations may also uncover other challenges
as well as how developers are using new tools (such as
Screen Hero,12 which supports collaborative screen sharing)
and how they use homegrown tools.

Additionally, these studies should be extended to com-
mercial projects—i.e., non-open source projects—with dif-
ferent constraints and restrictions (e.g., being forced to use
specific tools). The themes that emerged in this study will
help form a new version of the survey.13

10. https://github.com/blog/2047-language-trends-on-github

11. http://thechiselgroup.github.io/channel-study/
12. https://screenhero.com/
13. http://thechiselgroup.org/2013/11/19/how-do-you-develop-

software/

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

Our future work will allow us to continue developing a
descriptive theory on how different channel affordances
may shape participatory development activities. Our hope
is that this theory can be used to help developers and tool
designers anticipate the benefits and challenges certain
combinations of tools may bring, as well as reveal new
opportunities to improve tools and work practices.

Currently, the vast majority of the tools developers adopt
and rely on are developed by industry. We suggest that
researchers may be able to play a bigger role in tool design
by understanding the implications of the tools that are used
and then revealing ways they may be improved. For exam-
ple, tools that offer aggregation mechanisms may address
the information fragmentation issues, or there may be ways
that tools can be improved to address cultural barriers.

9 CONCLUSIONS

While this study is part of ongoing research, it presents sev-
eral key contributions: the survey instrument; demo-
graphics of the social programmer; which channels
developers use to support their participatory development
activities, and which ones are most important to them; and
the challenges developers face using a broad spectrum of
tools while engaging in participatory development work
practices. We also provide a number of preliminary recom-
mendations that developers may follow to address the chal-
lenges we presented.

Finally, communication channels shape and challenge
the participatory culture in software development. How-
ever, the reverse is also true: not much is understood about
the impact of the participatory culture on software develop-
ment practices and the communication channels developers
use. We believe this research also has implications on other
knowledge workers—software developers are referred to as
the knowledge worker prototype as they are not only the first to
use and shape tools and channels, but also have far lower
barriers to build and tweak them [41]. It won’t be surprising
if the challenges and opportunities that emerged from our
study propagate to other domains as well.

ACKNOWLEDGMENTS

The authors would like to thank the respondents for taking
so much time to answer the survey, as well as Cassandra
Petrachenko for her assistance with coding the data and
editing this paper.

REFERENCES

[1] H. Jenkins, Confronting the Challenges of Participatory Culture: Media
Education for the 21st Century. Cambridge,MA,USA:Mit Press, 2009.

[2] E. C. Wenger and W. M. Snyder, “Communities of practice: The
organizational frontier,” Harvard Business Rev., vol. 78, no. 1,
pp. 139–146, 2000.

[3] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and
K. Schneider, “Mutual assessment in the social programmer ecosys-
tem: An empirical investigation of developer profile aggregators,”
inProc. Conf. Comput. Support. Coop.Work, 2013, pp. 103–116.

[4] M.Chui, et al., The social economy: Unlocking value and productivity
through social technologies, 2012. [Online]. Available: http://www.
mckinsey.com/insights/high_tech_telecoms_internet/
the_social_economy

[5] F. Lanubile, Social software as key enabler of collaborative development
environments. 2013. [Online]. Available: http://www.slideshare.
net/lanubile/lanubilesse2013-25350287

[6] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagal-
sky, “The (r)evolution of social media in software engineering,” in
Proc. 36th Int. Conf. Softw. Eng. Future Softw. Eng., 2014, pp. 100–
116. [Online]. Available: http://doi.acm.org/10.1145/
2593882.2593887

[7] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery
in free/libre and open source software team communications,” in
Proc. 39th Annu. Hawaii Int. Conf. Syst. Sci., vol. 6, Jan. 2006,
pp. 118a–118a.

[8] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social
coding site,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 112–121.

[9] J. Fried and D. H. Hansson, Remote: Office Not Required. London,
U.K.: Ebury Digital, 2013.

[10] P. Naur, “Programming as theory building,” Microprocess. Micro-
progr., vol. 15, no. 5, pp. 253–261, 1985.

[11] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. V. Deursen,
“Communication in open source software development mailing
lists,” in Proc. 10th Working Conf. Min. Softw. Repositories, 2013,
pp. 277–286. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2487085.2487139

[12] L. Singer, F. Figueira Filho, and M.-A. Storey, “Software engi-
neering at the speed of light: How developers stay current
using Twitter,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 211–221. [Online]. Available: http://doi.acm.org/10.1145/
2568225.2568305

[13] E. Shihab, Z. M. Jiang, and A. Hassan, “On the use of internet
relay chat (IRC) meetings by developers of the GNOME GTK+
project,” in Proc. IEEE 6th Int. Working Conf. Min. Softw. Reposito-
ries, May2009, pp. 107–110.

[14] Y. Dittrich and R. Giuffrida, “Exploring the role of instant messag-
ing in a global software development project,” in Proc. IEEE 6th
Int. Conf. Global Softw. Eng., Aug. 2011, pp. 103–112.

[15] W. Scacchi, “Understanding the requirements for developing
open source software systems,” in Proc. IEE Softw., vol. 149, no. 1,
pp. 24–39, Feb. 2002.

[16] M. McLuhan and Q. Fiore, The Medium Is the Message. Penguin
Books: New York, NY USA 1967.

[17] T. Turner, P. Qvarfordt, J. T. Biehl, G. Golovchinsky, and M. Back,
“Exploring the workplace communication ecology,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2010, pp. 841–850.

[18] S. Black, R. Harrison, and M. Baldwin, “A survey of social media
use in software systems development,” in Proc. 1st Workshop Web
2.0 Softw. Eng., 2010, pp. 1–5.

[19] R. Giuffrida and Y. Dittrich, “A conceptual framework to study
the role of communication through social software for coordina-
tion in globally-distributed software teams,” Inf. Softw. Technol.,
vol. 63, pp. 11–30, 2015. [Online]. Available: http://www.science-
direct.com/science/article/pii/S095058491500049X

[20] R. Giuffrida and Y. Dittrich, “Empirical studies on the use of
social software in global software development a systematic map-
ping study,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1143–1164, 2013.
[Online]. Available: http://www.sciencedirect.com/science/arti-
cle/pii/S0950584913000153

[21] C. Treude, F. Figueira Filho, B. Cleary, and M.-A. Storey,
“Programming in a socially networked world: The evolution of
the social programmer,” in Proc. Workshop Future Collaborat. Softw.
Develop., 2012, pp. 1–3.

[22] N. Postman, “The humanism of media ecology,” in Proc. Media
Ecology Assoc., vol. 1, 2000, pp. 10–16.

[23] C. Parnin and S. Rugaber, “ Resumption strategies for interrupted
programming tasks,” Softw. Quality J., vol. 19, no. 1, pp. 5–34,
2011. [Online]. Available: http://dx.doi.org/10.1007/s11219–010-
9104-9

[24] O. Baysal, R. Holmes, and M. W. Godfrey, “No issue left
behind: Reducing information overload in issue tracking,” in
Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014,
pp. 666–677. [Online]. Available: http://doi.acm.org/10.1145/
2635868.2635887

[25] M. Goldman, G. Little, and R. C. Miller, “Real-time collaborative
coding in a web IDE,” in Proc. 24th Annu. ACM Symp. User Inter-
face Softw. Technol., 2011, pp. 155–164.

[26] H. C. Stuart, L. Dabbish, S. Kiesler, P. Kinnaird, and R. Kang,
“Social transparency in networked information exchange: A theo-
retical framework,” in Proc. ACM Conf. Comput. Support. Coop.
Work, 2012, pp. 451–460. [Online]. Available: http://doi.acm.org/
10.1145/2145204.2145275

STOREY ET AL.: HOW SOCIAL AND COMMUNICATION CHANNELS SHAPE AND CHALLENGE A PARTICIPATORY CULTURE IN SOFTWARE. . . 203

[27] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software
repository,” in Proc. ACM Conf. Comput. Support. Coop. Work, 2012,
pp. 1277–1286. [Online]. Available: http://doi.acm.org/10.1145/
2145204.2145396

[28] I. Steinmacher, T. U. Conte, M. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in
open source software projects,” in Proc. 18th ACM Conf. Comput.
Support. Coop. Work Social Comput., 2015, pp. 1379–1392.

[29] R. L. Daft and R. H. Lengel, “Organizational information require-
ments, media richness and structural design,” Manage. Sci.,
vol. 32, no. 5, pp. 554–571, 1986.

[30] G. Robles, L. Arjona Reina, A. Serebrenik, B. Vasilescu, and J.
M. Gonz�alez-Barahona, “FLOSS 2013: A survey dataset about free
software contributors: Challenges for curating, sharing, and
combining,” in Proc. 11th Working Conf. Min. Softw. Repositories,
2014, pp. 396–399. [Online]. Available: http://doi.acm.org/
10.1145/2597073.2597129

[31] P. A. David and J. S. Shapiro, “Community-based production of
open-source software: What do we know about the developers
who participate?” Inf. Econ. Policy, vol. 20, no. 4, pp. 364–398,
2008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167624508000553

[32] B. Vasilescu, et al., “Gender and tenure diversity in GitHub
teams,” in Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst.,
2015, pp. 3789–3798. [Online]. Available: http://doi.acm.org/
10.1145/2702123.2702549

[33] G. M. Olson and J. S. Olson, “Distance matters,” Hum.-Comput.
Interact., vol. 15, no. 2, pp. 139–178, Sep. 2000. [Online]. Available:
http://dx.doi.org/10.1207/S15327051HCI1523_4

[34] P. Bjørn, M. Esbensen, R. E. Jensen, and S. Matthiesen, “Does dis-
tance still matter? revisiting the CSCW fundamentals on distrib-
uted collaboration,” ACM Trans. Comput.-Hum. Interact., vol. 21,
no. 5, pp. 27:1–27:26, Nov. 2014. [Online]. Available: http://doi.
acm.org/10.1145/2670534

[35] A. R. Dennis and S. T. Kinney, “Testing media richness theory in
the new media: The effects of cues, feedback, and task equivo-
cality,” Inf. Syst. Res., vol. 9, no. 3, pp. 256–274, 1998.

[36] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hart-
mann, “Design lessons from the fastest Q&A site in the west,” in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2011, pp. 2857–2866.
[Online]. Available: http://doi.acm.org/10.1145/1978942.1979366

[37] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collo-
cated software development teams,” in Proc. 29th Int. Conf. Softw.
Eng., 2007, pp. 344–353. [Online]. Available: http://dx.doi.org/
10.1109/ICSE.2007.45

[38] A. Begel and T. Zimmermann, “Analyze this! 145 questions for
data scientists in software engineering,” in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 12–23. [Online]. Available: http://doi.acm.
org/10.1145/2568225.2568233

[39] C. Treude and M.-A. Storey, “Effective communication of soft-
ware development knowledge through community portals,” in
Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng.,
2011, pp. 91–101. [Online]. Available: http://doi.acm.org/
10.1145/2025113.2025129

[40] F. Calefato, D. Damian, and F. Lanubile, “Computer-mediated
communication to support distributed requirements elicitations
and negotiations tasks,” Empir. Softw. Eng., vol. 17, no. 6, pp. 640–
674, 2012.

[41] A. Kelly, Changing Software Development: Learning to Become Agile.
New York, NY, USA: Wiley, 2008.

Margaret-Anne Storey is a professor of com-
puter science and the director of software engi-
neering program at the University of Victoria. She
holds a Canada Research Chair in Human and
Social Aspects of Software Engineering. Her
research goal is to understand how technology
can help people explore, understand, and share
complex information and knowledge. She evalu-
ates and applies techniques from knowledge
engineering, social software, and visual interface
design to applications such as collaborative soft-

ware development, program comprehension, biomedical ontology devel-
opment, and learning in Web-based environments.

Alexey Zagalsky received the bachelor’s and
master’s degrees in computer science from
Tel Aviv University, Israel. He is working toward
the PhD degree under the guidance of Margaret-
Anne Storey from the University of Victoria. He
focuses on software engineering, studying the
interplay between developers, tools, their activi-
ties, and how all of it affects collaboration and
communication. He is also interested in human-
computer interaction, human aspects in software
engineering, and computer supported collabora-

tive learning. He has published papers in a variety of conferences,
including ICSE, CSCW, and MSR, and his current research aims to form
a theory of knowledge in software engineering.

Fernando Figueira Filho is a professor of soft-
ware engineering at the Federal University of Rio
Grande do Norte. His research interests include
software engineering and (CSCW), focusing on
sociotechnical systems, and helping design soft-
ware that empowers people to cooperate more
effectively and creatively.

Leif Singer received the PhD in computer sci-
ence from Leibniz Universit€at Hannover, Ger-
many. He is a jack of all trades at Automattic Inc.,
where he talks to users, plans iterations, ships
software, and analyzes data to make WordPress.
com better. He is also an affiliate researcher with
the University of Victoria. His reasearch focused
on how software developers collaborate, how
people use tools (among them computers) to
achieve their goals, how we learn, and how all of
those can be made better.

Daniel M. German is a professor at the Depart-
ment of Computer Science, University of Victoria,
where he does research in the areas of mining
software repositories, open source software engi-
neering, and intellectual property.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 2, FEBRUARY 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

