
18 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

Software Bots
Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky

FROM COMPUTER PROGRAMS’
earliest days, people have dreamed
about programs that act, talk, and
think like humans. Such programs
could not only automate tasks that
humans perform but also work with
humans to solve intellectual tasks
that can’t be entirely automated.
Even as far back as 1966, the hope
was for these programs to pass the
Turing test,1 in which humans are
fooled into believing they’re interact-
ing with an intelligent human rather
than a mere program.

The terms “chatbot,” “chatter-
bot,” and “bot” were interchangeably
used to describe the realization of this
vision quite early on. But now, they
refer mostly to a conversational-style
UI, an anthropomorphized script,
or an agent that automates rote and
tedious tasks. Bots typically aren’t

intended to fool users into believing
they’re interacting with a real person,
but many bots do have a pleasant, en-
gaging personality.

Bots typically reside on platforms
on which users work or play with
other users. They also frequently
integrate secondary services into
communication channels, providing
a conduit between users and other
tools. They might fetch or share in-
formation, extract and analyze data,
detect and monitor events and ac-
tivities in communication and social
media, connect users with each other
or with other tools, or provide feed-
back and recommendations on indi-
vidual and collaborative tasks.

Here, we discuss types of bots,
describe some platforms for working
with them, and offer guidelines on
how to create and use them.

Bots and Software
Development
Bots are rapidly becoming a de facto
interface for interacting with soft-
ware services. This is due partly to
the widespread adoption of messag-
ing platforms (for example, Facebook
Messenger for social networking
and Slack for developer communi-
cation), and partly to the advance-
ment of natural-language processing,
which many bots leverage. But an-
other driver is the prevalence of big
data, along with machine-learning
algorithms for analyzing data across
many domains. Bots provide a con-
venient way for developers to gener-
ate a UI for interacting with these
algorithms and data.

Major software companies are
recognizing the value bots bring in
terms of integrating services, users,

From the Editor

Bots have become a common user interface for software services. Many people

prefer bots to real persons owing to bots’ perceivable passionate “personality.” The

Turing test obviously has been passed. However, bots’ involvement in social net-

works and fake emails in elections exposed major risks. A lot still must be done, in-

cluding some indication that “you’re now talking with a bot.” Here, Carlene Lebeuf,

Margaret-Anne Storey, and Alexey Zagalsky discuss current bot technology and

present a practical case study on how to use bots in software engineering. I look

forward to hearing from both readers and prospective authors about advances in

software technologies. —Christof Ebert

SOFTWARE TECHNOLOGY

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 19

and communication channels. Face-
book aims to “replace apps” one bot
at a time in its messaging platform,2
while Microsoft claims that “conver-
sation as a platform” is the OS of the
future.3

Alexa, Siri, IBM Watson, and
Google Now all support this shift
toward bots. There are also many
bots in the platforms software devel-
opers use to connect with other de-
velopers and services, such as Slack,
Microsoft Teams, and HipChat.

The transition from command-
line interfaces to interacting with
bots through messaging tools feels
intuitive to most developers. We see
new examples of sophisticated and
innovative bots stemming from de-
veloper’s needs;4 these examples
are paving the way for bots in other
domains.

This situation is inspiring the de-
velopment of bots for users, who are
spending increased time in messag-
ing applications and are embracing
bots as an alternative to installing
and relying on external apps. How-
ever, bot developers must carefully
consider not only where to host bots
and how to create them but also
when not to use them.

Botology: Understanding
the Bot Landscape
Although the development and wide-
spread adoption of bots have oc-
curred in just a few years, what’s
truly surprising are the diverse tasks
and roles bots have taken on. Instead
of trying to narrowly define bots or
chatbots, we embrace their diversity
and look for ways to characterize
their distinct features.

One way to characterize bots is
through their interaction model.
Some bots support a domain-specific
language in which users interact
with bots using specific commands

in a command-line interface. Other
bots might parse natural language
through text or speech. These bots
might also embed rich UI controls
in a platform that lets users respond
quickly.

Bots can support a pull-based ap-
proach in which users initiate interac-
tion with them (for example, a user
invokes the bot using commands such
as “Hey Siri”). They can also support
a push-based approach in which they
initiate the interaction on the basis of
some system or user context.

Another way to characterize bots
is in terms of their intelligence:

• Adaptation. Some bots are
context-aware and might use
that context to change how they
interact with users.

• Reasoning. Some bots follow
simple logic rules; others use
more advanced AI to drive their
behavior.

• Autonomy. Some bots are en-
tirely autonomous, some rely on
human input before acting, and
others use a mixed approach.

Finally, we can characterize bots
according to their purpose:

• Generalist bots such as Siri or
Cortana support a range of
simple tasks and direct users to
appropriate external resources
when deeper knowledge is
required.

• Transactional bots work on the
users’ behalf, automatically exe-
cuting transactions with external
systems (for example, automati-
cally making a purchase when a
price level is reached).

• Informational bots fetch infor-
mation for users (for example,
gathering insights about stocks
or providing weather updates).

• Productivity bots improve user
or team productivity by auto-
mating rote or tedious tasks (for
example, updating calendars or
silencing notifications).

• Collaboration bots help users
communicate, coordinate, and
collaborate (for example, con-
necting the right people at the
right time).

The sidebar provides examples of
how developers use bots to support
their work.

Creating and Hosting Bots
Although simple bots can be built
from scratch and self-hosted, many
developers leverage third-party
frameworks to streamline creation
and distribution. With the explo-
sion of new tools for bot devel-
opment, we need to distinguish
between the tools for building bots
(creation platforms) and the plat-
forms on which the bots dwell (dis-
tribution platforms).5

Companies such as Micro-
soft and Facebook offer compre-
hensive tooling to support bot
creation and distribution. Other
companies provide customized re-
sources for specific creation and
distribution tasks. Table 1 lists
some common bot platforms and
the creation and distribution ser-
vices they use, along with other
bot technologies.

Creation Platforms
Creation platforms provide a variety
of software foundations, frameworks,
toolkits, APIs, and other advanced
features (for example, natural-
language processing, search, and im-
age processing). These platforms
can be distribution-platform-specific
or produce bots that are deployable
across multiple platforms, such as the

SOFTWARE TECHNOLOGY

20 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Microsoft Bot Framework, Botkit,
and Pandorabots.

The provided services range from
documentation and code templates
to no-code-required bot-building
interfaces such as Chatfuel. Many
popular creation platforms also
have vibrant developer ecosystems—
developers can connect with these
online communities to obtain exper-
tise in the form of tutorials, articles,
discussions, and support. Other gen-
eral bot development communities,
such as Botmaker’s Slack group and
the Chatbot Magazine community,
are hotbeds for discussions on a vari-
ety of bot-related topics.

Distribution Platforms
Distribution platforms dictate where
and how users access bots; many
center around messaging or social
networking (for example, Messen-
ger, Skype, and WeChat). Other plat-
forms are domain-specific channels
for developers (for example, Slack,
Teams, and HipChat). These plat-
forms support human–bot, bot–bot,
or even system–bot interactions.

Selecting the right distribution
platform can benefit developers in a
variety of ways. Some platforms pro-
vide access to a user base. Launch-
ing a bot on an existing platform
gives developers a head start in

overcoming the cold-start user prob-
lem many new applications face. De-
velopers should consider not only the
size of the platform’s user base but
also the general user demographics
and the access costs for users. These
platforms define and standardize
how users interact with bots and
have built-in support for commands,
natural language, speech, and even
rich UI controls. The method of in-
teracting with a bot strongly influ-
ences the user’s experience and the
types of tasks users can perform.

Many distribution platforms of-
fer mechanisms for users to discover
and try out new bots. Like Apple’s

DEVELOPMENT BOTS IN ACTION

Software developers have been early adopters and proponents of bots because they’ve recognized bots’ potential for both enhanc-
ing individual and team productivity and significantly improving software quality. Chatbots bring awareness and transparency to
the communication channel and enable nontechnical team members to engage with operations without needing domain expertise
(for example, by using a bot for deployment).

For example, Sendwithus (sendwithus.com), a company that provides transactional email services, has adopted bots as part of
software development. With 25 employees and two office locations (Victoria, Canada, and San Francisco), Sendwithus uses Slack
as the central hub for its communications and DevOps, and bots fulfill several development tasks. For example, the bots

 • set reminders for team members (using Slackbot);
 • manage and coordinate customer support and help-desk tickets (using Help Scout; www.helpscout.net);
 • facilitate real-time communication with users visiting the Sendwithus website (using Olark piped into Help Scout; www.olark

.com);
 • manage physical communication (for example, through short message service and phone) and send messages to the company’s

communications hub (using Twilio; www.twilio.com);
 • accommodate custom tasks (for example, ordering a team’s lunch via a message on Slack) (using Hubot; hubot.github.com);
 • automatically share resources and documents (for example, screenshots) within the team (using Dropbox and Google Drive);
 • manage and track code migration and deployment from within Slack, raising team awareness when this happens, because

this might cause errors during migration (using a customized bot with Heroku integration);
 • monitor and index runtime warnings, errors, and exceptions (using Papertrail; papertrailapp.com);
 • notify the appropriate team members when errors and exceptions occur (using Sentry; sentry.io/welcome); and
 • track and aggregate the service status of other service providers the company depends on (using StatusPage; statuspage.io).

Developers can expect to see more and more bots being introduced to support their workflow and development-related activi-
ties. In addition, companies such as Sendwithus are recognizing their dependence on Slack and the bots that perform many of
their daily tasks, which have become crucial to the running of the company.

SOFTWARE TECHNOLOGY

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 21

Table 1. Features of popular bot creation and distribution services.*

Platform

Distribution services Creation services

User base

Interaction
mechanisms Discovery

Monetization
(bots collecting
payment from
users)

Software foundations

Developer
communitySize

Cost for
users

Cost or
license

Tools or
technologies Platforms

Slack (slack.com) 6 M daily
& 2 M
paid users
(2017)

• Free
• Paid

• Text
• Commands
• GUI

App
directory

No Free • Web API
• RTM API
• App

blueprints

Slack Yes

Microsoft Teams
(teams
.microsoft
.com

125 K
teams
(2017)

Paid • Text
• Commands
• GUI

Bot
directory

No Microsoft Bot Framework

OSS • Bot Builder
• Bot

Connector
• Service

integrations
• Azure Bot

Service
• .NET (C#)

SDK
• Node.js
REST SDK

Multiple
(Bot
Framework
Portal)

Yes

Skype
(www
.skype
.com)

3 M
monthly
users
(2017)

• Free
• Paid

• Speech
• Text
• Commands
• GUI

Bot
directory

Yes

HipChat (www.hipchat
.com)

90 K paid
users
(2017)

Paid • Text
• Commands
• GUI

Marketplace ? No No No No

Messenger (www
.messenger.com)

1.2 B
monthly
users
(2017)

Free • Text
• Commands
• GUI

• Facebook
pages

• Bot
Explorer

• QR codes

Yes Free • WebHooks
• APIs
• Design Kit
• Wit.ai
• RTM

Facebook No

WeChat/Weixin (web
.wechat.com)

889 M
monthly
users
(2016)

Free • Speech
• Text
• Commands
• GUI

QR codes Yes No No No No

Telegram (telegram
.com)

100 M
monthly
users
(2017)

Free • Text
• Commands
• GUI

Bot store Yes OSS • Bot API
• Telegram

API
• BotFather

Telegram No

Kik (www.kik.com) 15 M
monthly
users
(2017)

Free • Text
• Commands
• GUI

• Bot shop
• QR codes

No Free API Kik No

Other technologies Bot-hosting
platforms
• Alexa
• Echo
• Cortana
• Line
• Android
• Discord
• Cisco Spark
• Messages
• Viber
• Intercom
• Google Allo
• Twilio
• SMS
• Web

Extending
interactions
• Google Cloud
• Watson

Conversation
• Alexa Voice
• Luis.ai
• MindMeld

Bot
directories
• BotList
• ChatBottle
• Botwiki

Payment SDKs
• PayPal
• Stripe

Bot-building tools
• Api.ai
• Pandorabots
• Chatfuel
• Rebotify
• Botkit
• Gupshup
• OnSequel
• Flow XO
• Botsify
• BotMock
• BotMan

Online
communities
• Botmakers
• Chatbots.org
• chatbotsmagazine

.com
• Stack Overflow

*The table’s bottom row lists additional bot development technologies, by category. This list isn’t comprehensive; it’s just a sampling of popular technologies for bot builders to leverage. RTM = Real Time Messaging,
OSS = open source software, REST = Representational State Transfer, SDK = software development kit, and SMS = Short Message Service.

SOFTWARE TECHNOLOGY

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

App Store, some platforms offer vir-
tual “bot stores” where users browse
for bots. Third-party sites (for ex-
ample, BotList and ChatBottle)
also provide online catalogs of bots
for many popular distribution plat-
forms, making it easier for devel-
opers to promote and market their
bots. Mature distribution channels
have monetization features that let
bots safely collect payments from
users, which is particularly useful
for people developing transactional-
style bots.

Insights on Creating and
Using Bots
Bots are rapidly becoming perva-
sive: we interact with them in cars,
at home, in entertainment devices,
and at work. And, as we discuss in
the sidebar, bots play a sophisticated
and increasingly significant role in
software development projects. We
need to learn from these early adop-
tion experiences to find out not only
what works well but also what might
go wrong. Here are insights we’ve
gained from our research that devel-
opers should consider when creating
and using bots.

Amplification Doesn’t Replace
Collaboration
Bots are frequently used in group or
collaborative settings to automate
tasks that normally require human
interaction. But removing collabora-
tion opportunities can hamper cre-
ativity and productivity. Rather than
replacing collaboration, bots can
be used to reduce friction in com-
munication or task coordination.
For example, bots could provide
transparency on task progress, make
team goals more visible, link experts
with novices, and build team trust
and cooperation.6 However, the
poor design or overuse of bots might

lead to information and interruption
overload—issues bot designers must
watch out for.

Users Should Always Know
What to Expect
In contrast to the Turing bots pro-
posed in the 1950s, bot developers
should make it clear to users that
they’re interacting with a bot, not
another human. Similarly, if a bot
passes control to a human (for exam-
ple, when the bot can’t understand
a command or answer a question),
the user should be aware of this, and
the handover should be graceful and
transparent. This ensures that users
don’t lose trust in the systems sup-
ported by bots and that users under-
stand why control is being passed to
them. Also, the bot’s purpose—what
it can and can’t do—must be evident
and match user expectations.

User–Bot Interaction Should Be
Optimized
Ideally, users’ interactions with bots
should be smooth and frictionless.
This is achievable if designers care-
fully plan conversational flows, es-
pecially for conversational bots. For
example, bots might need to repeat
commands so that users know that
the bots are listening. Bots must also
be able to detect dead ends in conver-
sations and prompt users by giving
hints on how to continue interaction.

Some bots could incorporate UI
elements to reduce the number of
user clicks required and to make
the conversation more efficient. Im-
plementing global input checks for
common navigational keywords
(for example, help, back, cancel,
start over, and exit) can help avoid
the creation of “stubborn” or “clue-
less” bots.7 Tools such as BotMock
can help you prototype the user’s
“journey through your bot.” Finally,

many platforms have specific guide-
lines for bots to follow; for example,
Facebook recommends that its bots
follow a set of simple conversational
guidelines.8

Personality Matters More Than Looks
Because bots are predominantly text
based, how they use language—and
even how they’re named—can influ-
ence users’ perceptions of their per-
sonality, role, and capability. This
might seem surprising given that
users should know they’re interact-
ing with a mere program. However,
early research has shown that a bot’s
personality changes how users in-
teract with it. Even if a bot can ef-
fectively accomplish a user’s tasks,
people won’t adopt it if they find it
boring. The bot’s language should be
casual, accessible, friendly, and fun.
Bots should expect users to test their
abilities and respond accordingly.

But too much personality might
not be a good thing, either. Accord-
ing to Slack, “a little goes a long
way.”9 Done right, bots can accen-
tuate a company’s brand or commu-
nicate a company culture (such as
playfulness).

Bots Should Do No Harm
Isaac Asimov’s three laws of robot-
ics state that robots must not harm
humans, must obey orders, and must
protect themselves.10 These rules can
also apply to software bots. But per-
haps, with the complexity and rapid
growth of bots in our software eco-
systems, these rules are too simple.
Simple mistakes could have dev-
astating effects, and protecting a
user’s privacy might be difficult. We
can expect to see a code of ethics for
human–bot interactions in the near
future. (One organization working
on this is the Partnership on AI; www
.partnershiponai.org.)

SOFTWARE TECHNOLOGY

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 23

In the meantime, developers
should carefully consider how their
bots might be misused, intentionally
or unintentionally. Many bots are al-
ready seen as malicious, so building
user trust might also pose a challenge.
For now, many bot creation and dis-
tribution platforms provide basic
principles or best practices for bot de-
sign (for example, the platforms from
Microsoft,7 Slack,9 and Facebook8).
But developers wishing to use bots or
create them for users must be careful
which bots they bring to life.

We anticipate a rapid in-
crease in developers us-
ing and creating bots.

Indeed, Joel Splosky of Stack Over-
flow claims that “developers are
writing the script for tomorrow”11
by providing insights, through their
ability to innovate and lead by exam-
ple, into how technology can be used
in other domains. Developers have
the unique opportunity to not only
use bots in their knowledge work but
also lead the way on how bots can
solve both their and others’ needs.

References
1. A.M. Turing, “Computing Machin-

ery and Intelligence,” Mind, vol. 59,

no. 236, 1950, pp. 433–460; www

.jstor.org/stable/2251299.

2. M. Murgia, “Can Facebook Messen-

ger Kill Off Apps?,” The Telegraph,

15 Nov. 2015; www.telegraph.co.uk

/technology/facebook/11996896/Can

-Facebook-Messenger-kill-off-apps

.html.

3. “Conversation as a Platform,” video,

Channel 9, 25 Mar. 2016; channel9

.msdn.com/Events/Build/2016/C902.

4. M.-A. Storey and A. Zagalsky, “Dis-

rupting Developer Productivity One

Bot at a Time,” Proc. 24th ACM

SIGSOFT Int’l Symp. Foundations

of Software Eng. (FSE 16), 2016,

pp. 928–931.

5. M. Vakulenko, “Messenger vs. Skype

vs. Slack vs. Telegram: How to Spot

the Winners,” Mobile Lifestyle,

6 Apr. 2016; medium.com/mobile

-lifestyle/messenger-vs-skype-vs

-slack-vs-telegram-how-to-spot-the

-winners-adc34b4ca066.

6. C. Lebeuf, M.-A. Storey, and A.

Zagalsky, “How Software Developers

Mitigate Collaboration Friction with

Chatbots,” presentation at Talking

with Conversational Agents in Col-

laborative Action Workshop, 2017

Conf. Computer-Supported Coop-

erative Work and Social Computing

(CSCW 17), 2017.

7. “Principles of Bot Design,” Micro-

soft, 4 Aug. 2017; docs.microsoft

.com/en-us/bot-framework/bot

-design-principles.

8. “Designing for Messenger,” Face-

book, 2017; developers.facebook

.com/docs/messenger-platform

/design-resources.

9. “Voice and Tone: Communicating

for Clarity,” Building Great User

Experiences on Slack, Slack, 2017;

api.slack.com/best-practices

/voice-and-tone.

10. I. Asimov, “Runaround,” Astound-

ing Science-Fiction, Mar. 1942, pp.

94–103.

11. J. Spolsky, “Developers Are Writing

the Script for the Future,” blog,

9 Dec. 2016; www.joelonsoftware

.com/2016/12/09/developers

-are-writing-the-script-for-the

-future.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CARLENE LEBEUF is a master’s student in computer science and

a researcher at the University of Victoria. Contact her at clebeuf@

uvic.ca.

MARGARET-ANNE STOREY is a professor of computer science

at the University of Victoria. Contact her at mstorey@uvic.ca.

ALEXEY ZAGALSKY is PhD candidate in computer science at the

University of Victoria. Contact him at alexeyza@uvic.ca.

